Math 4460 4/3/23

Before we start topic 5
let's do some practice calculations
in Zn
Ex: Is
$$27 = 43$$
 in Z4?
Method 1
 $43 - 27 = 16 = 4.4 + a multiple of 4$
So, $43 = 27 \pmod{4}$
Thus, $27 = 43$ in Z4.
Method 2
 4143
 $43 - 3 = 4.10$
 $43 - 3 = 4.10$
 $43 - 3 = 4.10$
 $43 - 3 = 4.10$
 $43 - 3 = 4.10$
 $43 - 3 = 4.10$
 $43 - 3 = 4.10$
 $43 - 3 = 4.10$
 $43 - 3 = 4.10$
 $43 = 3 \pmod{4}$
 $43 =$

 $S_{0}, \overline{43} = \overline{3} = \overline{27}$

 $\mathbb{Z}_{4} = \{ \overline{0}, \overline{1}, \overline{2}, \overline{3} \}$

Ex: Consider $\mathbb{Z}_{7} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}, \bar{6}\}$ Reduce the following expression into the form X where $0 \leq X \leq 6$

 $\left[\frac{12^{2} \cdot (-3)}{12^{2} \cdot (-3)} + \frac{12^{2} + -5^{3}}{4201} + -5^{3}\right]$

 $\frac{12^{2} \cdot (-3)}{4} = -2^{2} \cdot (-3) = -12 = 2$ $\frac{12 = -2(\text{mod } 7)}{12 = -2} = -12 = -12 = -12 + 0$ $\frac{12 = -12 + 2 \cdot 7}{12 = -12 + 2 \cdot 7} = -12 + 2 \cdot 7$

Def: Let
$$n \in \mathbb{Z}$$
 with $n \ge 2$.
Let $\overline{x}, \overline{y} \in \mathbb{Z}_n$.
We say that \overline{x} and \overline{y} are
Multiplicative inverses in \mathbb{Z}_n if
 $\overline{x}, \overline{y} = T$ of this implies also
 $\overline{y}, \overline{x} = T$

Ex: Consider

$$Z_{10} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}\}$$

Note that

$$\overline{3} \cdot \overline{7} = \overline{21} = \overline{1}$$

 $21 - 1 = 20 = 2 \cdot 10$
 $21 \equiv 1 \pmod{10}$
So, $\overline{3}$ and $\overline{7}$ are multiplicative
inverses in \mathbb{Z}_{10} .
Also note that
 $\overline{9}, \overline{9} = \overline{81} = \overline{1}$
 $81 \equiv 1 \pmod{10}$
 $81 = 1 \pmod{10}$
 $81 = 1 \pmod{10}$
 $81 = 1 = 80 = 8 \cdot 10$
So, $\overline{9}$ is its own multiplicative
inverse in \mathbb{Z}_{10} .

 $A|se, T\cdot T = 1$ So, T is it's own multiplicative inverse in ZL10. Let's see if 2 has a multiplicative inverse in 1/10. 2.0 = 0you never えいニ 之 2.2=4 get T $\overline{2}\cdot\overline{3}=6$ So, 2 does $\overline{2.4} = 8$ $\overline{2}, \overline{5} = \overline{10} = 0$ 2.6 = 12 = 2not have a multiplicative 2.7 = 14 = 4inverse in $\overline{2} \cdot \overline{8} = \overline{16} = \overline{6}$ $\overline{2} \cdot \overline{9} = 18 = 8$ 410

Lemma: Let nEZ with n?? Let a, bell. If a = b (mod n), then gcd(a,n) = gcd(b,n)Equivalently, if a=b in Zn then gcd(a,n) = gcd(b,n)proof: HW 5 #15. E_X : In \mathbb{Z}_6 , we have $\overline{22} = \overline{4}$ And gcd(22,6) = 2g(d(4,6) = 2

This theorem is well-defined because of the lemma. I.e. if $\overline{a} = \overline{b}$, then gcd(q,n) = gcd(b,n)

 $E_X: n = 26$ Does 3 have a multiplicative inverse in Z26? Well, g(d(3, 26)) = 1Yes, 3 has a multiplicative inverse. It is 91 $\overline{3.9} = \overline{27} = 1$ 27=1 (mod 26) Note $gcd(4, 26) = 2 \neq 1$ So, 4 does not have a multiplicative inverse in 1/26.