$$
\begin{aligned}
& \text { Math } 4460 \\
& 4 / 3 / 23
\end{aligned}
$$

Before we start topic 5 let's do some practice calculations in $\mathbb{Z}_{n}$

Ex: Is $\overline{27}=\overline{43}$ in $\mathbb{Z}_{4}$ ?
Method 1
$43-27=16=4.4 \leftarrow$ a multiple of 4
So, $43 \equiv 27(\bmod 4)$
Thus, $\overline{27}=\overline{43}$ in $\mathbb{Z}_{4}$.

| Method 2 | $4 \longdiv { 4 3 }$ |  |
| :--- | :---: | :---: |
| $\overline{43}=\overline{3}$ | $\frac{-40}{\sqrt{3}}$ | $43=4 \cdot 10+3$ |
|  | $43-3=4 \cdot 10$ |  |
| 27 | $43 \equiv 3(\bmod 4)$ |  |
|  | $\frac{6}{3}$ <br> $4 \sqrt{27}$ <br> $\frac{-24}{3}$ |  |

So, $\overline{43}=\overline{3}=\overline{27} \quad \mathbb{Z}_{4}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$
Ex: Consider $\mathbb{Z}_{7}=\{\overline{0}, \overline{,}, \bar{i}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$
Reduce the following expression into the form $\bar{x}$ where

$$
\begin{aligned}
& 0 \leqslant x \leqslant 6 \\
& \overline{12}^{2} \cdot(\overline{-3})+\overline{4201}+\overline{-5}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{12}^{2} \cdot(\overline{-3})=\overline{-}^{2} \cdot(\overline{-3})=-12=\overline{4} \\
& \begin{array}{l}
12 \equiv-2(\bmod 7) \quad-12 \equiv 2(\bmod 7) \\
\frac{12}{12}=-2 \\
-12=-\frac{1}{12}+\frac{0}{2}
\end{array} \\
& =-12+\overline{2} \cdot \overline{7} \\
& \overline{7}=\overline{0} \rightarrow=\overline{2}
\end{aligned}
$$

$$
\overline{4201}=T \quad \begin{gathered}
7 \sqrt{4200} \\
\frac{-42}{1}
\end{gathered}
$$

$$
\begin{aligned}
& \overline{-5}^{3}=\overline{2}^{3}=\overline{8}=T \\
& -5 \equiv 2(\bmod 7) \quad 8 \equiv 1(\bmod 7)
\end{aligned}
$$

So,

$$
\begin{aligned}
& \overline{12}^{2} \cdot(\overline{-3})+\overline{4201}+\overline{-5}^{3} \\
= & \overline{2}+T+T \\
= & \overline{4}
\end{aligned}
$$

What is $\overline{-4311}$ equal to modulo 7 ?

$$
\left[\begin{array}{r}
\begin{array}{r}
7 \begin{array}{r}
-615 \\
-4311 \\
-(-42) \\
-11 \\
\frac{-(-7)}{-41} \\
\frac{-(-35)}{-6}
\end{array} \\
\begin{array}{rl}
-4311 & =\overline{-6} \\
& =\tau
\end{array} \\
\begin{array}{r}
-4311= \\
7(-615)+(-6)
\end{array} \\
\hline
\end{array} \\
\end{array}\right.
$$

Topic 5 - The multiplicative structione of $\mathbb{Z}_{n}$

Def: Let $n \in \mathbb{Z}$ with $n \geqslant 2$ Let $\bar{x}, \bar{y} \in \mathbb{Z}_{n}$.
We say that $\bar{x}$ and $\bar{y}$ are multiplicative inverses in $\mathbb{Z}_{n}$ if

$$
\bar{x} \cdot \bar{y}=T * \text { this implies also }
$$

Ex: Consider

$$
\begin{aligned}
& \text { Ex: Consider } \\
& \mathbb{Z}_{10}=\{\overline{0}, T, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}\}
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \overline{3} \cdot \overline{7}= \overline{21}=T \\
&=T \\
& 21-1=20=2 \cdot 10 \\
& 21 \equiv 1(\bmod 10)
\end{aligned}
$$

So, $\overline{3}$ and $\overline{7}$ are multiplicative inverses in $\mathbb{Z}_{10}$.
Also note that

$$
\begin{aligned}
& \overline{9} \cdot \overline{9}= \overline{81}=T \\
& \overline{4} \\
& 81 \equiv 1(\bmod (0) \\
& 81-1=80=8 \cdot 10
\end{aligned}
$$

So, $\overline{9}$ is its own multiplicative inverse in $\mathbb{Z}_{10}$.

Also, $T \cdot T=T$
So, $T$ is it's own multiplicative inverse in $\mathbb{Z}_{10}$.

Let's see if $\overline{2}$ has a multiplicative inverse in $\mathbb{Z}_{10}$.

$$
\begin{aligned}
& \overline{2} \cdot \overline{0}=\overline{0} \\
& \overline{2} \cdot \overline{2}=\overline{2} \\
& \overline{2} \cdot \frac{2}{4} \\
& \overline{2} \cdot \overline{3}=\overline{6} \\
& \overline{2} \cdot \overline{4}=\overline{8} \\
& \overline{2} \cdot \overline{5}=\frac{10}{10}=\overline{0} \\
& \frac{2}{2} \cdot \overline{12}=\frac{2}{4} \\
& \frac{2}{1} \cdot \overline{14}=\overline{4} \\
& \overline{2} \cdot \overline{8}=\frac{16}{}=\overline{6} \\
& \overline{2} \cdot \overline{9}=\frac{18}{}
\end{aligned}
$$

you never get $T$

So, $\overline{2}$ does not have a multiplicative inverse in $\mathbb{Z}_{10}$
$\left(\begin{array}{c|c}\begin{array}{c}\text { element } \\ \text { in } \\ \text { 10 }\end{array} & \text { multiplicative inverse } \\ \hline \hline \overline{0} & \text { none } \\ \hline \overline{1} & \text { T } \\ \hline \overline{2} & \text { none } \\ \hline \overline{3} & \overline{7} \\ \hline \overline{4} & \text { none } \\ \hline \overline{5} & \text { none } \\ \hline \overline{6} & \text { none } \\ \hline \overline{7} & \overline{3} \\ \hline \overline{8} & \text { none } \\ \hline \overline{9} & \overline{9} \\ \hline\end{array}\right.$

Lemma: Let $n \in \mathbb{Z}$ with $n \geqslant 2$. Let $a, b \in \mathbb{Z}$.
If $a \equiv b(\bmod n)$, then $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$
Equivalently, if $\bar{a}=\bar{b}$ in $\mathbb{Z}_{n}$ then $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$ proof: HW 5 \#15.

Ex: In $\mathbb{Z}_{6}$, we have $\overline{22}=\overline{4}$ And $\operatorname{gcd}(22,6)=2$

$$
\operatorname{gcd}(4,6)=2
$$

Theorem: Let $a, n \in \mathbb{Z}$ with $n \geqslant 2$. Then, $\bar{a}$ has a multiplicative inverse in $\mathbb{Z}_{n}$ if and only if $\operatorname{gcd}(a, n)=1$.
Moreover, if $\bar{a}$ has a multiplicative inverse, then the inverse is unique.
This theorem is well-defined because of the lemma. Ie if $\bar{a}=\bar{b}$, then $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$
$E x: n=26$
Does $\overline{3}$ have a multiplicative inverse in $\mathbb{Z}_{26}$ ?

Well, $\operatorname{gcd}(3,26)=1$
Yes, $\overline{3}$ has a multiplicative inverse.
It is $\overline{9}$ !
$\overline{3} \cdot \overline{9}=\overline{27}=\bar{T}$

$$
\frac{4}{27 \equiv 1(\bmod 26)}
$$

Note $\operatorname{gcd}(4,26)=2 \neq 1$
So, $\overline{4}$ does not have a multiplicative inverse in $\mathbb{Z}_{26}$.

