Math 4460 4/24/23

HW 4 (#12) Show that $4/(n^2+2)$ for any integer n. Suppose Proof: Suppose there existr an integer n where $n^2 + 2 = 4 \left(\frac{4}{n^2 + 2} \right)$ fur some lEZ. Then in Zy we would have $n^2 + 2 = 0$ \Rightarrow since $\overline{4} = 0$ in \mathbb{Z}_4 Let's show this can't happen. From the table we \overline{n} $\overline{n+2}$ see that there is ō Z no ne Zy where $\overline{h} + 2 = \overline{0}.$ $\overline{2}$ $\overline{6} = \overline{2}$ So we get a contradiction. Thus, 4X(n+2) for all n. $\overline{11} = \overline{3}$ 3

HW 4 (14) Prove that $x^2 - 5y^2 = 2$ has No integer solutions. Proof by contradiction: Suppose there did exist integers x and y = 0 Where $x^{2} - 5y^{2} = 2$. We would have $\times =$ in La hen We see from the $\begin{vmatrix} -2 \\ -2 \end{vmatrix}$ table that there $\left(\begin{array}{c} \\ \\ \end{array} \right)$ is no XEZS Ī Where $\overline{X} = 2$. $2^{2} = 4$ Contradiction. Z 3=9=4 Hence, $x^2 - 5y^2 = 2$ 3 $\hat{y}^{2} = \hat{y}^{2} = \hat{y}^{2}$ ر ب does not have integer Solutions.

HW 3
3) Prove that
$$\log_{10}(2)$$
 is irrational.
proof by contradiction:
Suppose $\log_{10}(2)$ is rational.
Then $\log_{10}(2) = \frac{x}{y}$ where x and
y are positive integers $\log_{10}(t) > 0$ iff
and $gcd(x,y)=1$.
Thus, $10^{x/y} = 2$.
So, $10^{x} = 2^{y}$.
So, $2^{x} 5^{x} = 2^{y}$.
Since prime fuctorization is unique
and there are no 5's on the
right side of the equation

we must have that
$$x=0$$
.
Then we get $2^{\circ}5^{\circ}=2^{\circ}$.
Thus $l = 2^{\circ}$
But then $y=0$.
Contradiction.
Thus, $log_{10}(2)$ is irrational.

HW 3 (5)(b)Let a, b, n be positive integers. iff gcd(a,b)> Prove gcd(a,b)>1 proof? (\rightarrow) Suppose $d = g(d(\alpha, b) > 1.$ Then, d/a and d/b. Su, a = dk and b = dl, where $k, l \in \mathbb{Z}$ Then, $a = d(ka^{-1})$ and $b = d(lb^{-1})$. So, d and d b. Thus, $gcd(a,b) \ge d > 1$.

 (\square) Suppose d = gcd(a,b)>1.Since d>1 we know there exists a prime p where pld. Since d=gcd(a,b) we know dlan and dlb. Since pld and dla, we know pla. Since pld and dlb we know plb. Since p is prime and pla. pla.a., then pla. Sn

Since p is prime and plb.b...b, then plb. in Thus, $g(d(a,b) \ge p > 1$ p is prime

 $\begin{array}{c} || HW 5 \\ \hline 0 \\ \hline 0 \\ | \\ 7 \\ = \\ \hline 0 \\ 2 \\ 7 \\ = \\ 7 \\ 9 \\ cd(0,7) = 7 \\ \hline 0 \\ 9 \\ cd(2,7) = 1 \\ \hline 0 \\ cd(2,$

$$Z_{7}^{x} = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$$

$$\overline{1} \cdot \overline{1} = \overline{1} \quad \forall \quad \overline{1}^{-1} = \overline{1}$$

$$\overline{2} \cdot \overline{4} = 8 = \overline{1} \quad \forall \quad \overline{2}^{-1} = \overline{4} \quad \text{and} \quad \overline{4}^{-1} = \overline{2}$$

$$\overline{3} \cdot \overline{5} = \overline{15} = \overline{1} \quad \forall \quad \overline{3}^{-1} = \overline{5} \quad \text{and} \quad \overline{5}^{-1} = \overline{3}$$

$$\overline{6} \cdot \overline{6} = \overline{36} = \overline{1} \quad \forall \quad \overline{6}^{-1} = \overline{6}$$