$$
\begin{aligned}
& \text { Math } 4460 \\
& 4 / 24 / 23
\end{aligned}
$$

WW 4
(\#12) Show that $4 X\left(n^{2}+2\right)$ for any integer n.
proof: Suppose there exists a_{n} integer n where $n^{2}+2=4 l$ for some $\ell \in \mathbb{Z}$.
Then in \mathbb{Z}_{4} we would have

$$
\bar{n}^{2}+\overline{2}=\overline{0}
$$

$$
\text { in } \mathbb{Z}_{4}
$$

Let's show this cant happen.

\bar{n}	$\bar{n}^{2}+\overline{2}$
$\overline{0}$	$\overline{2}$
\bar{T}	$\overline{3}$
$\overline{2}$	$\overline{6}=\overline{2})$
$\overline{3}$	$\pi=(\overline{3})$

From the table we see that there is no $\bar{n} \in \mathbb{Z}_{4}$ where $\bar{n}^{2}+\overline{2}=\overline{0}$.
So we get a contradiction. Thus, $4 \times\left(n^{2}+2\right)$ for all n.

HF 4
(14) Prove that $x^{2}-5 y^{2}=2$ has no integer solutions.
Proof by contradiction: Suppose there did exist integers x and y where $x^{2}-5 y^{2}=2$.]
Then in \mathbb{Z}_{5} we would have

$$
\sqrt{\bar{x}^{2}=\overline{2}}
$$

\bar{x}	\bar{x}^{2}
$\overline{0}$	$\overline{0}$
\bar{T}	\bar{T}
$\overline{2}$	$\overline{2}^{2}=\overline{\overline{4}}$
$\overline{3}$	$\overline{3}^{2}=\overline{9}=\overline{4}$
$\overline{4}$	$\overline{4}^{2}=\overline{1}=\bar{T}$

We see from the table that there is $n_{0} \bar{x} \in \mathbb{Z}_{S}$
where $\bar{x}^{2}=\overline{2}$.
Contradiction.
Hence, $x^{2}-5 y^{2}=2$ does not have integer Solutions.

HF 3
(3) Prove that $\log _{10}(2)$ is irrational. proof by contradiction:
Suppose $\log _{10}(2)$ is rational.
Then $\log _{10}(2)=\frac{x}{y}$ where x and y one positive integers $\left[\log _{10}(t)>0\right.$ eff $\left.\quad t>1\right]$ and $\operatorname{gcd}(x, y)=1$.
Thus, $10^{x / y}=2$.
So, $10^{x}=2^{y}$.

$$
S_{0}, 2^{x} 5^{x}=2^{y}
$$

Since prime fuctorization is unique and there are no S's on the right side of the equation
we must have that $x=0$.
Then we get $2^{0} 5^{0}=2^{y}$.
Thus $1=2^{y}$
But then $y=0$.
Contradiction.
Thus, $\log _{10}(2)$ is irrational.

WW 3
(5) (b)

Let a, b, n be positive integers. Prove $\operatorname{gcd}(a, b)>1$ iff $\operatorname{gcd}\left(a^{n}, b^{n}\right)>1$
proof:
(c) Suppose $d=\operatorname{gcd}(a, b)>1$.
Then, $d \mid a$ and $d \mid b$.
Sou, $a=d k$ and $b=d l$, where
Then, $a^{n}=d\left(k a^{n-1}\right)$ and $b^{n}=d\left(l b^{n-1}\right)$.
So, d| a^{n} and $d \mid b^{n}$.
Thus, $\operatorname{gcd}\left(a^{n}, b^{n}\right) \geqslant d>1$.
(\leftrightarrow) Suppose $d=\operatorname{gcd}\left(a^{n}, b^{n}\right)>1$.
Since $d>1$ we know there exists a prime p where old.
Since $d=\operatorname{gcd}\left(a^{n}, b^{n}\right)$ we
know d lan and d / b^{n}.
Since pld and $d \mid a^{n}$, we know $p \mid a^{n}$.
Since $p \mid d$ and $d \mid b^{n}$ we know $p \mid b^{n}$.
Since p is prime and $p \mid \underbrace{a \cdot a \cdots a}_{a^{n}}$, then $p \mid a$.

Since p is prime and $p \mid \underbrace{b \cdot b \cdot b}_{b^{n}}$, then $p_{p \mid b}$.
Thus, $\operatorname{gcd}(a, b) \geqslant p_{p}>1$
p is prime

$$
\begin{aligned}
& \begin{array}{l}
\text { HW5 } \quad \operatorname{gcd}(1,7)=1 \quad \operatorname{gcd}(3,7)=1 \\
\text { (1) } \mathbb{Z}_{7}=\left\{\overline{6}, \overline{1}, \overline{2}, \frac{\pi}{3}, \overline{4}, \overline{5}, \frac{\overline{6}}{}\right\} \operatorname{gcd}(6,7)=1 \\
\operatorname{gcd}(0,7)=7 \quad \operatorname{gcd}(2,7)=1 \\
\operatorname{gcd}(4,7)=1
\end{array} \\
& \text { HW } 5 \\
& \mathbb{Z}_{7}^{x}=\{T, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\} \\
& T \cdot T=T \quad T^{-1}=T \\
& \overline{2} \cdot \overline{4}=\overline{8}=T \text { } \overline{2}^{-1}=\overline{4} \text { and } \overline{4}^{-1}=\overline{2} \\
& \overline{3} \cdot \overline{5}=\overline{15}=T \leftarrow \overline{3}^{-1}=\overline{5} \text { and } \overline{5}^{-1}=\overline{3} \\
& \overline{6} \cdot \overline{6}=\overline{36}=T \longleftarrow \overline{6}^{-1}=\overline{6}
\end{aligned}
$$

