Math 4460 4/17/23

Corollary (Fermat's theorem) If p is prime and $a \in \mathbb{Z}_{p}^{\times}$, then $\overline{a}^{p-1} = T$ in Z/p. Proof: Since pis prime, $\varphi(p) = |Z_p|$ $= \left\{ \left\{ \overline{1}, \overline{2}, \cdots, \overline{p} \right\} \right\}$ = p - lSo, Esler says that > $\frac{-p}{\alpha} = \frac{-\varphi(p)}{2} = \frac{\varphi(p)}{2} = \frac{\varphi($

EX: (HW 5 #9) 5127 in Z12. Reduce We have $Z_{12}^{\times} = \{\overline{1}, \overline{5}, \overline{7}, \overline{1}\} \neq$ $S_0, \overline{5} \in \mathbb{Z}_{12}^{\times}$ And, $\varphi(12) = |Z_{12}| = 4$ Thus, Euler says that $5^4 = 1$ in \mathbb{Z}_{12} .

Note,

127 = 4(31) + 357 Su, $5^{127} - 4(31) + 3 = 5$ 3 $=(5^{4})^{31}, 5^{31}$ $\frac{31}{5}$ - 3 - 3 25.5 -127 - 5 = 5رەك 1.5 7/12. 5

Def: Let
$$n \in \mathbb{Z}$$
, $n \ge 2$.
We say that $\overline{g} \in \mathbb{Z}_n^{\times}$ is
a primitive root for \mathbb{Z}_n^{\times}
if every element \overline{g} in \mathbb{Z}_n^{\times}
can be written in the form
 $\overline{g} = \overline{g}^k$
where k is a positive integer.

<u>Ex:</u> $Z_{10} = \{ \overline{2}, \overline{3}, \overline{7}, \overline{9} \}$ Is T a primitive root in Zro? $\overline{1}$ = $\overline{1}$ you don't get all of Zx from $\int_{1}^{2} = 1$ (the positive powers) of T. So, T \int_{1}^{3} с г а 1 0) is not a primitive root of ZX. Is 3 a primitive root of Zio? $\frac{1}{3} = \frac{1}{3}$ $\frac{1}{3}^{2} = 9$ $\overline{3}^{3} = \overline{27} = \overline{7}$

$$3^{4} = \overline{3}^{3} \cdot \overline{3} = \overline{7} \cdot \overline{3} = \overline{21} = \overline{1}$$

$$3^{5} = \overline{3}^{4} \cdot \overline{3} = \overline{1} \cdot \overline{3} = \overline{3}$$

$$3^{6} = \overline{9}$$

$$3^{7} = \overline{7}$$

$$3^{8} = \overline{1}$$

$$3^{8} = \overline{1}$$

$$3^{8} = \overline{1}$$

$$3^{1} = \overline{3}$$

$$3^{1} = \overline{3}$$

$$3^{1} = \overline{3}$$

$$3^{1} = \overline{3}$$

$$3^{1} = \overline{7}$$

$$3^{2} = \overline{9}$$

$$4 = 1$$

$$6 = 2 + 3$$

$$3^{2} = \overline{7}$$

$$6 = 2 + 3$$

$$3^{2} = \overline{7}$$

$$3^{2} = \overline{7}$$

$$3^{4} = \overline{1}$$

$$7 = 1$$

$$7 = 1$$

Is 7 a primitive root of Zing 7' = 7Yes, Fis $\overline{7}^{2} = \overline{49} = (9)$ $\vec{7} = \vec{7} \cdot \vec{7} = \vec{9} \cdot \vec{7} = \vec{63} =$ C $7' = 7^3 \cdot 7 = 3 \cdot 7 = 21 = 1$ root $7^{5} = 7$ SISIACE repeats $\overline{7}^6 = \overline{9}$ 7=7 $\frac{1}{7} = 3$ $\bar{7}^{2} = \bar{9}$ $-\frac{8}{7}=1$ $\frac{-3}{7} = \frac{-3}{3}$ Ø 74=T we see 7 is a primitive root.

What about 9 P $\overline{9}' = \overline{9}$ } the positive powers $\overline{9}' = \overline{81} = \overline{1}$ } inly give you $\overline{9}' = \overline{81} = \overline{1}$ } T and $\overline{9}$ 9 = 9 repeats Forever $\overline{q}^{4} = \overline{1}$ 0 a d So, 9 is not a primitive root. Summary: The primitive roots of $Z_{10}^{\times} = \{\overline{1}, \overline{3}, \overline{7}, \overline{7}, \overline{9}\}$ are 3 and 7

Ex: $Z_{8}^{x} = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ T is not a primitive root. 3' = (3)3 is $3^{2} = 9 =$ not a $3^{3} = 3$ $3^{4} = 1$ $3^{4} = 1$ $3^{4} = 1$ primitive root 5'=5 5'=25=1 5'=5repeats 5 is not a primitive root

54= 7 is not a primitive rost. 7 = 77 = 49 =77=7 repeats 0 / has no Summary: Z/8

primitive roots.

lheorem: Let p be a Prime. Then, there exists a primitive root for Zp. Moreover, there are q(p-1) primitive roots. Ex: $Z_5^{\times} = \widehat{5}\overline{1}, \overline{2}, \overline{3}, \overline{4}$ of elements powers 3 _ Z 3-3

3

4-

· 4

z =

2 = 8

-2

-5 - 1

 $\overline{1}^{4} = \overline{1}$

The primitive roots of
$$\mathbb{Z}_5^x$$

are \mathbb{Z} and \mathbb{Z}
Note $\varphi(p-1) = \varphi(5-1)$
 $= \varphi(4)$
 $= |\mathbb{Z}_4^x|$
 $= |\mathbb{Z}_4^x|$
 $= |\mathbb{Z}_4^x|$
The theorem says there are
 \mathbb{Z} primitive roots

Theorem: There exists a primitive root of Zn if and only if $h = 2, 2^{2} = 4, p^{k}, or 2p^{l}$ where p is an odd prime. and k, l are positive integers EX: Consider Zg. $n = 8 = 2^{3}$ no primitive roots Ex: Consider Z27 $N = 27 = 3^{3} = p^{3}$ where p = 3 is an odd prime there are primitive roots

EX: Consider ZSO $n = 50 = 2 \cdot 5^2 = 2 \cdot p^2$, $p = 5 \frac{dd}{prime}$ Exi Consider Zizo $n = 120 = 2.60 = 2^{2} \cdot 30 = 2^{3} \cdot 3 \cdot 5$ Not in above list So, Zizo has no primitive roots