Math 4460

$$
4 / 17 / 23
$$

Corollary (Fermat's theorem)
If p is prime and $\bar{a} \in \mathbb{Z}_{p}^{x}$, then $\bar{a}^{p-1}=T$ in \mathbb{Z}_{p}^{x}.
proof: Since p is prime,

$$
\begin{aligned}
\varphi(p) & =\left|\mathbb{Z}_{p}^{x}\right| \\
& =|\{T, \overline{2}, \ldots, \overline{p-1}\}| \\
& =p-1
\end{aligned}
$$

So, Euler says that

$$
\bar{a}^{p-1}=\bar{a}^{\varphi(p)} \stackrel{\underline{a}}{=} \overline{\text { in }} \mathbb{Z}_{p}^{x}
$$

Ex: (HW 5 \#(9))
Reduce $\overline{5}^{127}$ in \mathbb{Z}_{12}.
We have

$$
\mathbb{Z}_{12}^{x}=\{\pi, \overline{5}, \overline{7}, \pi\}
$$

So, $\overline{5} \in \mathbb{Z}_{12}^{x}$
And, $\varphi(12)=\left|\mathbb{Z}_{12}^{x}\right|=4$
Thus, Euler says that

$$
\overline{5}^{4}=T \text { in } \mathbb{Z}_{12}^{x}
$$

Note,

$$
\begin{aligned}
& \begin{array}{l}
127=4(31)+3 \leftarrow \begin{array}{l}
\frac{31}{4127} \\
\text { So, } \\
\overline{5}^{127}=\overline{5}^{-4(31)+3}
\end{array} \quad \begin{array}{l}
\frac{-4}{3}
\end{array}
\end{array} \\
& =\left(\overline{5}^{4}\right)^{31} \cdot \overline{5}^{3} \\
& \sqrt{5^{4}=T}=T^{31} \cdot \overline{5}^{3} \\
& =\overline{5}^{3} \\
& =\overline{25} \cdot \overline{5} \\
& \mathrm{in}^{25}=\frac{1}{21} \pm T \cdot \overline{5} \\
& \text { So, } \overline{5}^{127}=\overline{5} \\
& =\overline{5} \leadsto \text { in } \mathbb{Z}_{12} \text {. }
\end{aligned}
$$

Def: Let $n \in \mathbb{Z}, n \geqslant 2$.
We say that $\bar{g} \in \mathbb{Z}_{n}^{x}$ is a primitive root for \mathbb{Z}_{n}^{x}
if every element \bar{y} in \mathbb{Z}_{n}^{x} can be written in the form

$$
\bar{y}=\bar{g}^{k}
$$

where k is a positive integer.

4550 language:
$\overline{9}$ is a primitive root means \mathbb{Z}_{n}^{x} is cyclic with $\overline{9}$ as a generator

Ex: $\mathbb{Z}_{10}^{x}=\{T, \overline{3}, \overline{7}, \overline{9}\}$
Is T a primitive root in \mathbb{Z}_{10}^{x} ?

$$
\begin{aligned}
& T^{1}=T \\
& T^{2}=T \\
& T^{3}=T
\end{aligned}
$$

You don't get all of \mathbb{Z}_{10}^{x} from the positive powers of T, So, T is not a primitive root of \mathbb{Z}_{10}^{x}.
Is $\overline{3}$ a primitive root of $\mathbb{Z}_{10}^{x} ?$

$$
\begin{aligned}
& \overline{3}^{1}=\overline{3} \\
& \overline{3}^{2}=\overline{9} \\
& \overline{3}^{3}=\overline{27}=\overline{7}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\overline{3}^{4}=\overline{3}^{3} \cdot \overline{3}=\overline{7} \cdot \overline{3}=\overline{21}=T \\
\overline{3}^{5}=\overline{3}^{4} \cdot \overline{3}=\overline{1} \cdot \overline{3}=\overline{3} \\
\overline{3}^{6}=\overline{9} \\
\overline{3}^{7}=\overline{7} \\
\overline{3}^{8}=7
\end{array}\right\} \text { repeats }
$$

So, $\overline{3}$ is a primitive root, because $\overline{3}^{\prime}=\overline{3} \quad$ all the $\left.\overline{3}^{2}=\overline{9}\right\} \begin{aligned} & \text { elements }\end{aligned}$ $\overline{3}^{3}=\overline{7}$ $3^{-4}=1$
 are a positive power of $\overline{3}$

Is $\overline{7}$ a primitive root of $\mathbb{Z}_{10}^{x} \mathbb{R}$

$$
\begin{aligned}
& \left.\begin{array}{l}
\overline{7}^{1}=\overline{7} \\
\overline{7}^{2}=\overline{49}=\overline{9} \\
\overline{7}^{3}=\overline{7}^{2} \cdot \overline{7}=\overline{9} \cdot \overline{7}=\overline{63}=\overline{3} \\
\overline{7}^{4}=\overline{7}^{3} \cdot \overline{7}=\overline{3} \cdot \overline{7}=\overline{21}=\overline{1} \\
\overline{7}^{5}=\overline{7} \\
\overline{7}^{6}=\overline{9} \\
\overline{7}^{7}=\overline{3} \\
\overline{7}^{8}=T \\
\vdots
\end{array}\right\} \begin{array}{l}
\text { Yes, } \\
\text { rests } \\
\text { prover } \\
\text { primitive } \\
\text { root }
\end{array} \\
& \begin{array}{l}
\text { since } \\
\overline{7}^{1}=\overline{7} \\
\overline{7}^{2}=\overline{9} \\
\overline{7}^{3}=\overline{3} \\
\overline{7}^{4}=T
\end{array}
\end{aligned}
$$

we see $\overline{7}$ is a primitive root.

What about $\overline{9}$?

$$
\begin{aligned}
& \bar{q}^{\prime}=\bar{q} \\
& \bar{q}^{2}=\overline{81}=T \\
& \bar{q}^{3}=\bar{q} \\
& \left.\bar{q}^{4}=\overline{1} \quad \begin{array}{l}
\text { only give you } \frac{1}{9} \text { and } \\
\vdots \\
\vdots
\end{array}\right\} \begin{array}{l}
\text { repeats } \\
\text { forever }
\end{array}
\end{aligned}
$$

So, $\overline{9}$ is not a primitive root.
Summary: The primitive roots of $\mathbb{Z}_{10}^{x}=\{T, \overline{3}, \overline{7}, \overline{9}\}$ are $\overline{3}$ and $\overline{7}$.
$E x_{0}^{0} \mathbb{Z}_{8}^{x}=\{\tau, \overline{3}, \overline{5}, \overline{7}\}$
T is not a primitive root.
\(\left.\begin{array}{ll}\overline{3^{1}}=\overline{3} \\
\overline{3}^{2}=\overline{9}= \& \overline{1} \\
\overline{3}^{3}=\overline{3} \\
\overline{3}^{4}=T \\
\vdots \\

\vdots\end{array}\right]\) repeats | not a |
| :--- |
| primitive |
| root |

$\bar{S}^{\prime}=(\overline{5})$
$\overline{5}$ is not
$\overline{5}^{2}=\frac{5}{25}=$ (1)
a primitive
$\overline{5}^{3}=\overline{5} \quad$ repeats
root

Summary: \mathbb{Z}_{8}^{x} has no primitive roots.

Theorem: Let p be a prime. Then, there exists a primitive root for \mathbb{Z}_{p}^{x}. Moreover, there are $\varphi(p-1)$ primitive roots.

$$
E x: \mathbb{Z}_{5}^{x}=\{T, \overline{2}, \overline{3}, \overline{4}\}
$$

The primitive roots of \mathbb{Z}_{5}^{x} are $\overline{2}$ and $\overline{3}$

Note $\varphi(p-1)=\varphi(5-1)$

$$
\begin{aligned}
& =\varphi(4) \\
& =\left|\mathbb{Z}_{4}^{x}\right| \\
& =|\{T, \overline{3}\}| \\
& =2
\end{aligned}
$$

The theorem says there are 2 primitive roots

Theorem: There exists a primitive root of \mathbb{Z}_{n}^{x} if and only if

$$
n=2,2^{2}=4, p^{k} \text {, or } 2 p^{l}
$$

where p is an odd prime. and k, l are positive integers
Ex: Consider \mathbb{Z}_{8}^{x}.

$$
n=8=2^{3}
$$

no primitive roots
Ex: Consider \mathbb{Z}_{27}^{x}
$n=27=3^{3}=p^{3}$ where $p=3$ is there are primitive roots an odd prime

Ex: Consider $\mathbb{Z}_{S_{0}}^{x}$

$$
\begin{aligned}
& \text { Ex: Consider } \mathbb{Z}_{\text {so }} \\
& n=50=2 \cdot 5^{2}=2 \cdot p^{l}, \begin{array}{l}
p=5 \begin{array}{l}
\text { odd } \\
\text { prime }
\end{array} \\
l=2
\end{array} .
\end{aligned}
$$

Ex: Consider \mathbb{Z}_{120}^{x}

$$
n=120=2 \cdot 60=2^{2} \cdot 30=2^{3} \cdot 3 \cdot 5
$$

not in above list So, \mathbb{Z}_{120}^{x} has no primitive roots

