Math 4460

$$
4 / 12 / 23
$$

Def: Let $n \in \mathbb{Z}$ with $n \geqslant 2$.
Define the Euler phi function (or the Euler totient function) by the formula

$$
\begin{aligned}
& y \text { the formula } \\
& \varphi(n)=\left|\mathbb{Z}_{n}^{x}\right| \leftarrow \begin{array}{c}
\text { size of } \\
\text { the set } \\
\mathbb{Z}_{n}^{x}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{E x_{0}}{\varphi(2)}=\left|\mathbb{Z}_{2}^{x}\right| \stackrel{\downarrow}{=}|\{T\}|=1 \\
& \varphi(3)=\left|\mathbb{Z}_{3}^{x}\right|=|\{T, 2\}|=2 \\
& \varphi(4)=\left|\mathbb{Z}_{4}^{x}\right|_{p}=|\{T, \overline{3}\}|=2 \\
& \therefore \quad \therefore \quad \mathbb{Z}_{4}=\{0, \text {, 市, }, \overline{3}\}
\end{aligned}
$$

$$
\begin{gathered}
\therefore \\
\vdots \\
\phi(10)=\left|\mathbb{Z}_{10}^{x}\right|=|\{T, \bar{\beta}, \overline{7}, \overline{9}\}|=4 \\
\begin{array}{c}
g(x, 10)=1 \\
1 \leq x \leq 9
\end{array}
\end{gathered}
$$

Theorem:
(1) If p is prime, then $\varphi(p)=p-1$
(2) If p is prime and k is a positive integer, then

$$
\varphi\left(p^{k}\right)=p^{k}-p^{k-1}
$$

(3) If a and b are integers with $a, b \geqslant 2$ and $\operatorname{gcd}(a, b)=1$ then $\varphi(a b)=\varphi(a) \varphi(b)$
(4) If $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{n}^{k_{n}}$ is the prime factorization of n, then

$$
\varphi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{n}}\right)
$$

Proof:
We won't prove this theorem.

Ex: Let's calculate $\left|\mathbb{Z}_{360}^{x}\right|$ We have

$$
\begin{aligned}
& 360=36 \cdot 10=6^{2} \cdot 2 \cdot 5=2^{2} \cdot 3^{2} \cdot 2 \cdot 5 \\
& 360=2^{3} \cdot 3^{2} \cdot 5^{1}
\end{aligned}
$$

So,

$$
\begin{aligned}
& \text { So, } \\
& \varphi(360)=360\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2^{3} \cdot 3^{2} \cdot 5\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{4}{5}\right) \\
\overline{1-\frac{1}{p}} & =2^{2} \cdot 3 \cdot 2 \cdot 4 \\
=\frac{p-1}{p} & =96
\end{aligned}
$$

So, $\varphi(360)=\left|\mathbb{Z}_{360}^{x}\right|=96$.

Notation: Let $n \in \mathbb{Z}, n \geqslant 2$. Let $\bar{a} \in \mathbb{Z}_{n}^{x}$.
Suppose $\mathbb{Z}_{n}^{x}=\left\{\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{\varphi(n)}\right\}$ Define

$$
\bar{a} \cdot \mathbb{Z}_{n}^{x}=\left\{\bar{a}_{1} \bar{a}_{1}, \bar{a} \bar{a}_{2}, \ldots, \bar{a} \bar{a}_{\varphi(n)}\right\}
$$

Ex: Let $n=10$
Then, $\mathbb{Z}_{10}^{x}=\{T, \overline{3}, \overline{7}, \overline{9}\}$
Let $\bar{a}=\overline{9}$.

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
\overline{9} \cdot \mathbb{Z}_{10}^{x} & =\{\overline{9} \cdot \overline{1}, \overline{9} \cdot \overline{3}, \overline{9} \cdot \overline{7}, \overline{9} \cdot \overline{9}\} \\
& =\{\overline{9}, \overline{27}, \overline{63}, \overline{8} 1\} \\
& =\{\overline{9}, \overline{7}, \overline{3}, \overline{1}\} \\
& =\{\overline{1}, \overline{3}, \overline{7}, \overline{9}\}
\end{aligned}
\end{aligned}
$$

$$
=\mathbb{Z}_{10}^{x}
$$

Theorem: Let $n \in \mathbb{Z}_{x}$ with $n \geqslant 2$. Let $\bar{a} \in \mathbb{Z}_{n}^{x}$.
Then, $\bar{a} \cdot \mathbb{Z}_{n}^{x}=\mathbb{Z}_{n}^{x}$
proof:
We will show (1) $\mathbb{Z}_{n}^{x} \subseteq \bar{a} \cdot \mathbb{Z}_{n}^{x}$ and (2) $\bar{a} \cdot \mathbb{Z}_{n}^{x} \subseteq \mathbb{Z}_{n}^{x}$.

$$
\frac{(1)\left(\mathbb{Z}_{n}^{x} \subseteq \bar{a} \cdot \mathbb{Z}_{n}^{x}\right)}{\text { Let } \bar{x} \in \mathbb{Z}_{n}^{x}} \quad \begin{aligned}
& \text { Ideal } \\
& \bar{x}=\bar{a} \cdot(?) \\
& \bar{x}=\bar{a} \cdot(-\bar{a} \cdot \bar{x})
\end{aligned}
$$

Since $\bar{a} \in \mathbb{Z}_{n}^{x}$ we know
\bar{a}^{-1} exists and $\bar{a}^{-1} \in \mathbb{Z}_{n}^{x}$.
Since $\bar{x}, \bar{a}^{-1} \in \mathbb{Z}_{n}^{x}$ and \mathbb{Z}_{n}^{x} is closed under multiplication by a previous theorem we know $\bar{a}^{-1} \cdot \bar{x} \in \mathbb{Z}_{n}^{x}$.
Thus, $\bar{x}=\bar{a} \cdot \underbrace{\left(\bar{a}^{-1} \bar{x}\right)}_{\text {in } \mathbb{Z}_{n}^{x}} \in \bar{a} \cdot \mathbb{Z}_{n}^{x}$
So, $\mathbb{Z}_{n}^{x} \subseteq \bar{a} \cdot \mathbb{Z}_{n}^{x}$.
$\frac{\text { (2) }\left(\bar{a} \cdot \mathbb{Z}_{n}^{x} \subseteq \mathbb{Z}_{n}^{x}\right)}{\text { Let } \bar{y} \in \bar{a} \cdot \mathbb{Z}_{n}^{x}}$

Then, $\bar{y}=\bar{a} \cdot \bar{z}$ where $\bar{z} \in \mathbb{Z}_{n}^{x}$.
Since $\bar{a}, \bar{z} \in \mathbb{Z}_{n}^{x}$ and
\mathbb{Z}_{n}^{x} is closed under multiplication we know

$$
\bar{y}=\bar{a} \cdot \bar{z} \in \mathbb{Z}_{n}^{x}
$$

Thus, $\bar{a} \cdot \mathbb{Z}_{n}^{x} \subseteq \mathbb{Z}_{n}^{x}$.
So, by (1) and (2)

Euler's Theorem: Let $n \in \mathbb{Z}$ with $n \geq 2$.
Let $\bar{a} \in \mathbb{Z}_{n}^{x}$.
Then, $\bar{a}^{\varphi(n)}=\bar{T}$.
Equivalently: $a^{\varphi(n)} \equiv 1(\bmod n)$ when $\operatorname{gcd}(a, n)=1$

Ex: $n=360$
Recall $\varphi(360)=\left|\mathbb{Z}_{360}^{x}\right|=96$
Note $\operatorname{gcd}(7,360)=1$

So, $\overline{7} \in \mathbb{Z}_{360}^{x}$
Ever says: $\overline{7}^{96}=\bar{T}$
or $7^{96} \equiv 1(\bmod 360)$

$$
\begin{aligned}
& \frac{E_{x}}{\mathbb{Z}_{10}^{x}}=\{T, \overline{3}, \overline{7}, \overline{9}\} \\
& \varphi(10)=\left|\mathbb{Z}_{10}^{x}\right|=4
\end{aligned}
$$

Euler says:

$$
\left.\begin{array}{l}
-T^{4}=T \\
-\overline{3}^{4}=T \\
\overline{7}^{4}=T
\end{array}\right\} \begin{aligned}
& \text { happening } \\
& \text { in } \\
& \mathbb{Z}_{10}^{x}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\int^{\bar{q}^{4}}=T 1 \\
1^{4} \equiv 1(\bmod 10) \\
\rightarrow 3^{4} \equiv 1(\bmod 10) \\
7^{4} \equiv 1(\bmod 10) \\
9^{4} \equiv 1(\bmod 10)
\end{array}\right.
$$

Proof of Euler's Theorem:
Let $\mathbb{Z}_{n}^{x}=\left\{\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{\varphi(n)}\right\}$
Let $\bar{a} \in \mathbb{Z}_{n}^{x}$.
We want to show that $\bar{a}^{\varphi(n)}=\bar{T}$.

Recall that $\bar{a} \cdot \mathbb{Z}_{n}^{x}=\mathbb{Z}_{n}^{x}$.
Thus,

$$
\underbrace{\left(\bar{a}_{a_{1}}\right)\left(\bar{a} \bar{a}_{2}\right) \cdots\left(\bar{a} \bar{a}_{\varphi(n)}\right)}_{\begin{array}{c}
\text { all the elements of } \\
\bar{a} \cdot \mathbb{Z}_{n}^{x} \text { multiplied } \\
\text { together }
\end{array}}=\underbrace{\bar{a}_{1} \bar{a}_{2} \ldots \overline{a_{\varphi(n)}}}_{\begin{array}{l}
\text { all the } \\
\text { elements } \\
\text { of } \mathbb{Z}_{n}^{x} \\
\text { multiplied } \\
\text { together }
\end{array}}
$$

Factoring we get

$$
\bar{a}^{\varphi(n)}\left[\bar{a}_{1} \bar{a}_{2} \ldots \bar{a}_{\varphi(n)}\right]=\bar{a}_{1} \bar{a}_{2} \ldots \bar{a}_{\varphi(n)}
$$

Since each $\bar{a}_{i} \in \mathbb{Z}_{n}^{x}$ we know \bar{a}_{i}^{-1} exists for each i.
Multiply both sides by $\bar{a}_{1}^{-1} \bar{a}_{2}^{-1} \cdots \bar{a}_{\varphi(n)}^{-1}$
to get

$$
\begin{gathered}
\bar{a}^{\varphi(n)}\left[\bar{a}_{1} \bar{a}_{2} \cdots \bar{a}_{\varphi(n)}\right]^{-1} \bar{a}_{1}^{-1} \bar{a}_{2}^{-1} \cdots \bar{a}_{\varphi(n)}^{-1} \\
=\underbrace{\bar{a}_{1} \bar{a}_{2} \cdots \bar{a}_{\varphi(n)} \bar{a}_{1}^{-1} \bar{a}_{2}^{-1} \cdots \bar{a}_{\varphi(n)}^{-1}}
\end{gathered}
$$

Cancelling gives

$$
\bar{a}^{\phi(n)}=\bar{T}
$$

