$$
\begin{aligned}
& \text { Math } 4460 \\
& 3 / 8 / 23
\end{aligned}
$$

Today - integers mod n

Mon - back at school review for test new stuff if time

Weds - Test 1 Calculator is fine

Theorem: Let $n \in \mathbb{Z}$ with $n \geqslant 2$. Let $x, y \in \mathbb{Z}$.
(1) Either $\bar{x} \cap \bar{y}=\phi$ or $\bar{x}=\bar{y}$.
(2) $\bar{x}=\bar{y}$
iff $x \equiv y(\bmod n)$
inf $x \in \bar{y} \longleftrightarrow$ (o, $y \in \bar{x})$
(3) A complete set of distinct equivalence classes module n is given by $\overline{0}, \bar{T}, \overline{2}, \ldots, \overline{n-1}$.
That is, if $z \in \mathbb{Z}$ then $\bar{z}=\bar{r}$ for a unique integer r with $0 \leq r \leq n-1$.
Moreover, r is the remainder when you divide z by $n, E x ; n=3$

$z=10, n=3$ $10=3 \cdot 3+1$	$\frac{3}{10}=T$ 3 $z=10$ $\frac{-9}{10}$

proof: (1) and (2) are in the HW.
Let's prove (3)
Let $z \in \mathbb{Z}$.
By the division algorithm

$$
z=q n+r
$$

where $q, r \in \mathbb{Z}$ and $0 \leq \underbrace{r \leq n-1}_{r<n}$
Then, $z-r=n q$.
Thus, $n \mid(z-r)$.
So, $z \equiv r(\bmod n)$.
By part (2) this implies $\bar{z}=\bar{r}$.
Thus, $\bar{z} \in\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}$
ie \bar{z} is one of $\overline{0}, \bar{T}, \overline{2}, \ldots, \overline{n-1}$.

All we have to show is that none of $\overline{0}, T, \overline{2}, \ldots, \overline{n-1}$ are equal, they are all distinct.
Suppose $0 \leq a \leq b \leq n-1$ with $\bar{a}=\bar{b}$.
We will show that this implies that $a=b$.
Since $a \leqslant b \leqslant n-1$ we have
subtract by a

$$
0 \leq b-a \leq \underbrace{n-1-a}_{\leq n-1}
$$

Thus, $0 \leq b-a \leq n-1$
Since $\bar{a}=\bar{b}$, by part (2) of this theorem, this tells us that $a \equiv b(\bmod n)$.

So, $n((b-a)$.
The only way we can have $0 \leqslant b-a<n$ and $n l(b-a)$ is if $b-a=0$. [[hm from $\left.\begin{array}{c}\text { topic } 1\end{array}\right]$

Thus, $a=b$.

Def: Let $n \in \mathbb{Z}$ with $n \geqslant 2$.
Define

$$
\mathbb{Z}_{n}=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}
$$

\mathbb{Z}_{n} is culled the set of integers modulo n.

Ex:

$$
\begin{aligned}
& \mathbb{Z}_{2}=\{\overline{0}, T\} \\
& \mathbb{Z}_{3}=\{\overline{0}, T, \overline{2}\} \\
& \mathbb{Z}_{4}=\{\overline{0}, T, \overline{2}, \overline{3}\} \\
& \mathbb{Z}_{5}=\{\overline{0}, T, \overline{2}, \overline{3}, \overline{4}\}
\end{aligned}
$$

and so on...

We want to define t and \cdot in \mathbb{Z}_{n}. What if we just define it this way?

$$
\begin{aligned}
& \bar{a}+\bar{b}=\overline{a+b} \\
& \bar{a} \cdot \bar{b}=\overline{a b}
\end{aligned}
$$

But is this definition well-defined?

What do we mean by this question? Consider $\mathbb{Z}_{3}=\{\overline{0}, \bar{T}, \overline{2}\}$.

Using the proposed definition

$$
\overline{1}+\overline{2}=\overline{1+2}=\overline{3}=\overline{0}
$$

From the

There are an infinite number of ways

$$
3 \equiv 0(\bmod 3)
$$

so $\overline{3}=\overline{0}$ in \mathbb{Z}_{3} to describe T and $\overline{2}$. If we redescribe them do we get the same answer? For example, $T=\overline{4}$ in \mathbb{Z}_{3} because $1 \equiv 4(\bmod 3)$ and $\overline{2}=\overline{-10}$ because $2 \equiv-10(\bmod 3)$, And

$$
\overline{4}+\overline{-10}=\overline{4-10}=\overline{-6}=\overline{0}
$$

this better be the same as

$$
-6 \equiv 0(\bmod 3)
$$

$$
T+\overline{2}
$$

We get the same answer in this case.

Theorem (Addition and multiplication in \mathbb{Z}_{n} are well-defined)

Let $n \in \mathbb{Z}$ with $n \geqslant 2$.
Given $x, y \in \mathbb{Z}$, the operations

$$
\bar{x}+\bar{y}=\overline{x+y}
$$

and $\bar{x} \cdot \bar{y}=\overline{x \cdot y}$
are well-defined in $\mathbb{Z} n$.
proof: Let $a, b, c, d \in \mathbb{Z}$.
Suppose $\bar{a}=\bar{b}$ and $\bar{c}=\bar{d}$.
We want to show that

Since $\bar{a}=\bar{b}$ and $\bar{c}=\bar{d}$ we know previous this step

$$
\begin{aligned}
& \text { suppose } \bar{a}=b \\
& e \text { want to show that } \\
& \bar{a}+\bar{c}=\overline{a+c}=\overline{b+d}=\bar{b}=\overline{b d}=\bar{b} \cdot \bar{d} .
\end{aligned}
$$

$$
\begin{aligned}
& \bar{a}+\bar{c}=\overline{a+c}=\overline{b+d} \overline{\overline{b d}}=\bar{b} \cdot \bar{d} . \\
& \text { and } \bar{a} \cdot \bar{c}=\overline{a c}=\bar{b}
\end{aligned}
$$ $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$ today

By a theorem in class this implies that $(a+c) \equiv(b+d)(\bmod n)$ and $a c \equiv b d(\bmod n)$.
But then $\overline{a+c}=\overline{b+d}$ and $\overline{a c}=\overline{b d}$.

Ex: $\mathbb{Z}_{7}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$
Let's do some calculations in \mathbb{Z}_{7}.

$$
\begin{aligned}
& \overline{5}+\overline{6}=\overline{5+6}=\overline{11}=\overline{4} \\
& 11 \equiv 4(\bmod 7) \\
& \begin{aligned}
(\overline{5} \cdot \overline{6}) \cdot \overline{4}=\overline{30} \cdot \overline{4}=\overline{120}=\overline{1} & \begin{array}{r}
\text { remainder } \\
\frac{17}{120} \\
\frac{-7}{50} \\
\frac{-49}{1}
\end{array}
\end{aligned} \\
& \overline{6}^{8}=\overline{1,679,616}=T \\
& \text { Another idea: } \\
& \begin{array}{|c}
\begin{array}{c}
239945 \\
7 \\
\frac{1679616}{-\frac{14}{27}} \\
\frac{-21}{69} \\
\frac{-63}{66}
\end{array}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{6}^{8}=\overline{6}^{2} \cdot \overline{6}^{2} \cdot \overline{6}^{2} \cdot \overline{6}^{2} \\
& =\overline{36} \cdot \overline{36} \cdot \overline{36} \cdot \overline{36} \\
& =T \cdot T \cdot T \cdot T=T \\
& \overline{36}=T \\
& 36 \equiv 1(\bmod 7) \\
& 7 \longdiv { 3 6 } \\
& \begin{array}{r}
\text { 35 } \\
-35 \\
\hline \text { (1) }
\end{array}
\end{aligned}
$$

