Math 4460 3/8/23

Today - integers mod n

Theorem: Let ne Z with nz 2. Let x, y E Z. () Either $\overline{x} \cap \overline{y} = \phi$ or $\overline{x} = \overline{y}$. $(2) \overline{X} = \overline{Y}$ $iff X \equiv y \pmod{n}$ iff x E y d (or y E x) 3) A complete set of distinct equivalence classes modulo n is given by 0, T, Z, ..., n-l. That is, if ZEZ then Z=F for a unique integer r with O≤r≤n-l. Moreover, r is the remainder when $E_X: n=3$ 3/10 you divide Z by n. $\overline{10} = \overline{1}$ Z=(0, n=3) $10=3\cdot3+1$ Z=10

proof: (1) and (2) are in the HW. Let's prove 3 Let ZE U. By the division algorithm Z = qn+rwhere $q, r \in \mathbb{Z}$ and $0 \leq r \leq n - l$, r < nThen, Z-r=nq. Thus, n|(Z-r). Su, ZEr(modn). By part (2) this implies $\overline{Z} = \overline{\Gamma}$. Thus, $\Xi \in \{\overline{D}, \overline{T}, \overline{2}, \dots, \overline{N-1}\}$ ie Z is one of DJTJZJ..., N-I.

All we have to show is that
none of
$$\overline{0}, \overline{1}, \overline{2}, ..., \overline{n-1}$$
 are equal,
they are all distinct.
Suppose $0 \le a \le b \le n-1$ with $\overline{a} = \overline{b}$.
We will show that this implies that $a=b$.
Since $a \le b \le n-1$ we have
 $0 \le b-a \le n-1-a$
 $\le n-1$
Thus, $0 \le b-a \le n-1$
Thus, $0 \le b-a \le n-1$
Since $\overline{a} = \overline{b}$, by part (2) of this theorem,
this tells us that $a \equiv b \pmod{n}$.
So, $n ((b-a))$
The only way we can have $0 \le b-a < n$
The only way we can have $0 \le b-a < n$
The only is if $b-a = 0$. Then from
topic 1

Thus, $\alpha = b$.

$$\frac{E_{X}}{Z_{2}} = \{\overline{o}, T\} \\ \overline{Z}_{3} = \{\overline{o}, T, \overline{2}\} \\ \overline{Z}_{4} = \{\overline{o}, T, \overline{2}, \overline{3}\} \\ \overline{Z}_{5} = \{\overline{o}, T, \overline{2}, \overline{3}, \overline{4}\}$$

and so on ...

We want to define
$$+$$
 and \cdot in \mathbb{Z}_n .
What if we just define it this way?
 $\overline{a} + \overline{b} = \overline{a+b}$
 $\overline{a} \cdot \overline{b} = \overline{ab}$
But is this definition well-defined?

What do we mean by this question?
Consider
$$\mathbb{Z}_3 = \overline{20}, \overline{1}, \overline{2}$$
?
Using the proposed definition
 $\overline{1+2} = \overline{1+2} = \overline{3} = \overline{0}$
There are an infinite number of ways
There are an infinite number of ways
To describe T and $\overline{2}$. If we
redescribe them do we get the same answer?
For example, $\overline{T} = \overline{4}$ in \mathbb{Z}_3 because
 $\overline{1=4} \pmod{3}$ and $\overline{2} = -\overline{10}$ because
 $\overline{2=-10} \pmod{3}$, And
 $\overline{4+-\overline{10}} = \overline{4-10} = -\overline{6} = \overline{0}$
this better be
the same as
 $\overline{1+2}$

We get the same answer in this case.

Theorem (Addition and multiplication in
Zen are well-defined)
Let nEZ with nZZ.
Given X, Y E Z, The offer
$\overline{X} + \overline{Y} = X + Y$
and $\overline{x} \cdot \overline{y} = \overline{X} \cdot \overline{y}$ need to show
one well-defined in ET. This step
proof: Let a,b,c,a ca.
Suppose a=6 and that
We want to struct $a+c = b+d = b+d$
$a + c = ac$ = $bd = b \cdot d$. previous
and a c = and c = d we know from
Since a = b and c=d(mod n) Jourg
a = b (Moard) in class this implies that
By a theorem in (mod n) and ac=bd (mod n).
$(a+c) \equiv (b+a)$ (where $a = ba$ ($a = ba$ ($a = ba$)
But then atc = 6+d una us

Ex:
$$\mathbb{Z}_{7} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$$

Let's do some calculations in \mathbb{Z}_{7} .

$$5+6 = 5+6 = 11 = 4$$

 $11 = 4 (mod 7)$

$$(5.6).4 = 30.4 = 120 = 14$$
 remainder
 717
 7120
 -7
 50
 -49
 17

$$\overline{6}^8 = \overline{1,679,616} = \overline{1}$$

 $\overline{6}^8 = \overline{1,679,616} = \overline{1}$

 $\overline{7,1679616}$

 $\overline{14}$

 $\overline{27}$

 $\overline{69}$

 $\overline{6}$

 $\overline{6}$

 $\overline{6}$

 \overline

63 $\frac{-8}{6} = \frac{-2}{6} \cdot \frac{-2}{6} \cdot \frac{-2}{6} \cdot \frac{-2}{6} \cdot \frac{-2}{6}$ 31 - 28 - 36 - 35 = 36 - 36 - 36 - 36 $= \overline{1} \cdot \overline{1} \cdot \overline{1} \cdot \overline{1} = \overline{1}$ 4 $\overline{36} = \overline{1}$ 36 = 1 (mod 7] 736