$$
\begin{aligned}
& \text { Math 4460 } \\
& 3 / 20 / 23
\end{aligned}
$$

I'll have the tests
on Weds

Theorem: Let $n \in \mathbb{Z}, n \geq 2$. Let $a, b, c \in \mathbb{Z}$.
In \mathbb{Z}_{n} we have that:
(1) $\bar{a}+\bar{b}=\bar{b}+\bar{a}\}$ commutative
(2) $\bar{a} \cdot \bar{b}=\bar{b} \cdot \bar{a} \quad\}$ properties
(3) $\bar{a}+(\bar{b}+\bar{c})=(\bar{a}+\bar{b})+\bar{c}\}$ associative
(4) $\bar{a} \cdot(\bar{b} \cdot \bar{c})=(\bar{a} \cdot \bar{b}) \cdot \bar{c}\}$ properties
(5) $\bar{a} \cdot(\bar{b}+\bar{c})=\bar{a} \cdot \bar{b}+\bar{a} \cdot \bar{c} 1$ distributive
proof: This is a HW 4 problem 11 . Let's do (6) to see how to do these.

$$
\begin{aligned}
& \text { We have that } \\
& \begin{aligned}
&(\bar{b}+\bar{c}) \cdot \bar{a}=\overline{b+c} \cdot \bar{a} \\
&=\overline{(b+c) a} \\
& \begin{array}{l}
\text { W,b,c } \in \mathbb{Z} \\
\text { So, } \\
(b+c) a \\
=b a+c a
\end{array}=\overline{b a+c a} \\
& \text { and } \\
& \text { in } \mathbb{Z} n
\end{aligned} \\
& \\
& \\
& \\
& =\overline{b \cdot \bar{a}+\bar{c} \cdot \bar{a}}
\end{aligned}
$$

Ex: $\mathbb{Z}_{2}=\{\overline{0}, T\}$

$$
\begin{aligned}
& \bar{O}=\{\ldots,-6,-4,-2,0,2,4,6, \ldots\} \\
& T=\{\ldots,-7,-5,-3,-1,1,3,5,7, \ldots\}
\end{aligned}
$$

Given $x \in \mathbb{Z}$, then in \mathbb{Z}_{2} we have: $\bar{x}=\overline{0}$ iff x is even
$\bar{x}=T$ iff x is odd
\mathbb{Z}_{2} "detects"
even/odd-ness
parity

$$
\left.\begin{array}{l}
\frac{E x:}{\mathbb{Z}_{4}}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\} \\
\operatorname{In} \mathbb{Z}, \\
\overline{0}=\{\ldots,-8,-4,0,4,8, \ldots\} \\
\overline{2}=\{\ldots,-6,-2,2,6,10, \ldots\} \\
\overline{1}=\{\ldots,-7,-3,1,5,9, \ldots\} \\
\overline{3}=\{\ldots,-5,-1,3,7,11, \ldots\}
\end{array}\right]
$$

even integers
odd integers

Given $x \in \mathbb{Z}$, in \mathbb{Z}_{4} we have:
x is even iff $\bar{x}=\overline{0}$ or $\bar{x}=\overline{2}$
x is odd inf $\bar{x}=T$ or $\bar{x}=\overline{3}$
x is odd iff $x \equiv 1(\bmod 4)$
or $x \equiv 3(\bmod 4)$

Topic 4.5 - Application to Pythagorean Triples

Consider the equation

$$
x^{2}+y^{2}=z^{2}
$$

We will find formulas for all the integer solutions.

Consider the integer Solution $x=5, y=12, z=13$
You can get infinitely many solutions to $x^{2}+y^{2}=z^{2}$ by scaling any particular solution.
For example, set

$$
x=5 k, y=12 k, z=13 k
$$

is a solution given any $k \in \mathbb{Z}$.
Why?

$$
\begin{aligned}
x^{2}+y^{2} & =(5 k)^{2}+(12 k)^{2} \\
& =5^{2} k^{2}+12^{2} k^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(5^{2}+12^{2}\right) k^{2} \\
& =13^{2} k^{2} \\
& =(13 k)^{2}=z^{2}
\end{aligned}
$$

Some example solutions gotten by scaling $x=5, y=12, z=13$

k	$x=5 k$	$y=12 k$	$z=13 k$
1	5	12	13
-2	-10	-24	-26
10	50	120	130
\vdots	\vdots	\vdots	\vdots

Another way to get mure solutions is to change the signs of a solution.

$$
\begin{aligned}
& \text { Ex: Sols to } x^{2}+y^{2}=z^{2} \\
& (5,12,13),(5,12,-13),(5,-12,-13) \\
& (5,-12,13),(-5,12,132,(-5,12,-13) \\
& (-5,-12,13),(-5,-12,-13)
\end{aligned}
$$

Another way to get solutions is to set one or all to be 0 . For example,

$$
\begin{aligned}
& x=2, y=0, z=2 \\
& x=0, y=5, z=-5
\end{aligned}
$$

$$
x=0, y=0, z=0
$$

Def: We call (x, y, z) a Pythagorean triple if
(1) $x, y, z \in \mathbb{Z}$
(2) $(x, y, z) \neq(0,0,0)] \begin{gathered}\text { not all } \\ \text { zero }\end{gathered}$
and (3) $x^{2}+y^{2}=z^{2}$
If (x, y, z) is a Pythagorean triple, we say that it is positive if $x>0, y>0, z>0$

Ex: $(3,4,5)$ is a positive Pythagorean triple

Ex: $(0,2,-2)$ are Pythagorean $(-3,-4,5)$ triples

EX: $(25,60,-65)$ is a pythagorean triple because

$$
\begin{aligned}
& 25^{2}+60^{2}=625+3600=4225 \\
& (-65)^{2}=4225
\end{aligned}
$$

and so

$$
25^{2}+60^{2}=(-65)^{2}
$$

Let $d=\operatorname{gcd}(25,60,-65)=5$
Then,

$$
\begin{aligned}
& (25,60,-65) \\
& \quad=(5 \cdot 5,5 \cdot 12,-5 \cdot 13) \\
& =(d \cdot 5, d \cdot 12,-d \cdot 13)
\end{aligned}
$$

and $(5,12,13)$ is a positive Pythagorean triple with $\operatorname{gcd}(5,12,13)=1$.

Def: Let (x, y, z) be a Pythagorean triple. We say that (x, y, z) is primitive if $\operatorname{gcd}(x, y, z)=1$.

Theorem: Any Pythagorean triple is of the form ($\pm d a, \pm d b, \pm d c$) where (a, b, c) is a primitive, Pythagorean triple and $a \geqslant 0, b \geqslant 0, c \geqslant 0$ and d is a positive integer.

$$
\begin{aligned}
& \text { Exit }(9,-12,-15) \& \begin{array}{l}
\text { Pythagorean } \\
\text { triple }
\end{array} \\
& (9,-12,-15)=(3 \cdot 3,-3 \cdot 4,-3 \cdot 5) \\
& d=3,(a, b, c)=(3,4,5)
\end{aligned}
$$

proof of theorem: Let (x, y, z) be a Pythagorean triple.
Then $x^{2}+y^{2}=z^{2}$ and $(x, y, z) \neq(0,0,0)$

Let $d=\operatorname{gcd}(x, y, z)$.
From class, $\operatorname{gcd}\left(\frac{x}{d}, \frac{y}{d}, \frac{z}{d}\right)=1$.
Set

$$
\left.a=\left|\frac{x}{d}\right|, b=\left|\frac{y}{d}\right|, c=\left|\frac{z}{d}\right|\right]
$$

Then,

$$
(x, y, z)=(\pm d a, \pm d b, \pm d c)
$$

The $+/$ - sign depends on the signs of x, y, z.
We see $a \geqslant 0, b \geqslant 0, c \geqslant 0$
Since $d|x, d| y, d \mid z$ we have a, b, c are integers.
Also, $\operatorname{gcd}(a, b, c)=1$

And

$$
\begin{aligned}
& \text { And } \\
& a^{2}+b^{2}=\left|\frac{x}{d}\right|^{2}+\left|\frac{y}{d}\right|^{2} \\
&=\frac{x^{2}}{d^{2}}+\frac{y^{2}}{d^{2}} \\
&=\frac{1}{d^{2}}\left(x^{2}+y^{2}\right) \\
&=\frac{1}{d^{2}} z^{2} \\
&=\frac{z^{2}}{d^{2}} \\
&=\left|\frac{z}{d}\right|^{2} \\
&=c^{2}
\end{aligned}
$$

So, (a, b, c) is a primitive pythagorean triple. (4)

