Math 4460

$$
3 / 1 / 23
$$

Test 1 is
Weds 3/8

We can cover any problems you want to do on Monday

Theorem Let $n \in \mathbb{Z}$ with $n \geqslant 2$ Let $w, x, y, z \in \mathbb{Z}$. Then:
(1) $x \equiv x(\bmod n)$
(2) If $x \equiv y(\bmod n)$,
(1) reflexive
then $y \equiv x(\bmod n)$.
(3) If $x \equiv y(\bmod n)$
and $y \equiv z(\bmod n)$,
then $x \equiv z(\bmod n)$.
(4) If $w \equiv x(\bmod n)$ and $y \equiv z(\bmod n)$,
then $w+y \equiv x+z(\bmod n)$
and $w y \equiv x z(\bmod n)$.
Also, $w-y \equiv x-z(\bmod n)$.
(5) $x \equiv y(\bmod n)$ if
$x=y+n k$ where $k \in \mathbb{Z}$.
proof:
$a \equiv b(\bmod n)$
(1) $x-x=0=n(0)$ means $n \mid(a-b)$
So, $n \mid(x-x)$.
Thus, $x \equiv x(\bmod n)$.
(2) Suppose $x \equiv y(\bmod n)$.

Then, $n \mid(x-y)$.
So, $x-y=n l$ where $l \in \mathbb{Z}$.
Thus, $y-x=n(-l)$.
Hence, $n \mid(y-x)$.
So, $y \equiv x(\bmod n)$.
(3) Suppose $x \equiv y(\bmod n)$
and $y \equiv z(\bmod n)$.

Then, $n \mid(x-y)$ and $n \mid(y-z)$.
Hence, $x-y=n s$ and $y-z=n t$ where $s, t \in \mathbb{Z}$.
Adding gives

$$
x-z=n s+n t
$$

So, $x-z=n[s+t]$.
Alternative method

Ergo $n \mid(x-z)$.
It follows that $x \equiv z(\bmod n)$.
(4) Suppose $w \equiv x(\bmod n)$ and $y \equiv z(\bmod n)$.

Then, $n \mid(w-x)$ and $n \mid(y-z)$.
Thus, $w-x=n \alpha$ and $y-z=n \beta$
where $\alpha, \beta \in \mathbb{Z}$.
Then $(w+y)-(x+z)$

$$
\begin{aligned}
& =(w-x)+(y-z) \\
& =n \alpha+n \beta \\
& =n[\alpha+\beta]
\end{aligned}
$$

Sou, $n \mid[(w+y)-(x+z)]$
Thus,

$$
(w+y) \equiv(x+z)(\bmod n)
$$

Note that
$w y-x z$

$$
\begin{aligned}
& =\underbrace{(x+n \alpha}_{\omega}) y-x(\underbrace{y-n \beta}_{z}) \\
& =x y+n \alpha y-x y+x n \beta \\
& =n[\alpha y+x \beta]
\end{aligned}
$$

Hence, $n \mid[w y-x z]$.
So, $w y \equiv x z(\bmod n)$.

Also,

$$
\begin{aligned}
& (w-y)-(x-z) \\
& =(w-x)+(-y+z) \\
& =n \alpha-n \beta \\
& =n[\alpha-\beta]
\end{aligned}
$$

So, $n \mid[(w-y)-(x-z)]$
Thus, $(w-y) \equiv(x-z)(\bmod n)$.
(5) $x \equiv y(\bmod n)$
iff $n \mid(x-y)$
iff $\quad x-y=n k$ for some $k \in \mathbb{Z}$
iff $x=y+n k$ for some $k \in \mathbb{Z}$.

Def: Let $n \in \mathbb{Z}$ with $n \geqslant 2$. Let $x \in \mathbb{Z}$.
The equivalence class of x modulo n is

$$
\begin{aligned}
\bar{x} & =\{y \in \mathbb{Z} \mid y \equiv x(\bmod n)\} \\
& =\{\ldots, x-3 n, x-2 n, x-n,
\end{aligned}
$$

(5) from $x, x+n, x+2 n, x+3 n, \ldots\}$ theorem

Ex: $n=2$

$$
\begin{aligned}
\bar{O} & =\{y \in \mathbb{Z} \mid y \equiv 0(\bmod 2)\} \\
& =\{\cdots,-8,-6,-4,-2,0,2,4,6,8, \ldots\} \\
T & =\{y \in \mathbb{Z} \mid y \equiv 1(\bmod 2)\} \\
& =\{\ldots,-7,-5,-3,-1,1,3,5,7, \ldots\} \\
\overline{2} & =\{y \in \mathbb{Z} \mid y \equiv 2(\bmod 2)\} \\
& =\{\ldots,-6,-4,-2,0,2,4,6,8, \ldots\} \\
& =\overline{0} \\
\overline{3} & =\{\cdots,-5,-3,-1,1,3,5,7,9, \ldots\} \\
& =T
\end{aligned}
$$

Note

$$
\begin{array}{lll}
\overline{3}=\overline{1} & \text { and } & 3 \equiv 1(\bmod 2) \\
\overline{0}=\overline{2} & \text { and } & 0 \equiv 2(\bmod 2)
\end{array}
$$

Mod 2 partitions \mathbb{Z} into two equivalence classes: $\overline{0}, T$

Ex: $n=3$

$$
\begin{aligned}
\bar{O} & =\{y \in \mathbb{Z} \mid y \equiv 0(\bmod 3)\} \\
& =\{\ldots,-9,-6,-3,0,3,6,9, \ldots\} \\
T & =\{y \in \mathbb{Z} \mid y \equiv 1(\bmod 3)\} \\
& =\{\ldots,-8,-5,-2,1,4,7,10,13, \ldots\} \\
\overline{2} & =\{y \in \mathbb{Z} \mid y \equiv 2(\bmod 3)\} \\
& =\{\ldots, 7,-4,-1,2,5,8,11, \ldots\} \\
\overline{3} & =\{y \in \mathbb{Z} \mid y \equiv 3(\bmod 3)\} \\
& =\{\ldots,-6,-3,0,3,6,9,12, \ldots\}
\end{aligned}
$$

$$
=\bar{O} \quad \text { and note } 3 \equiv 0(\bmod 3)
$$

Mod 3 partitions \mathbb{Z} into 3 equivalence classes: $\overline{0}, T, \overline{2}$

$\overline{0}$	$\overline{2}$	\mathbb{Z}
\vdots	\vdots	\vdots
-9	-5	-7
-6	-2	-1
-3	-2	2
0	1	5
3	4	8
6	7	$1!$
9	10	\vdots
\vdots	\vdots	

