Math 4460 2/8/23

We want an algorithm to
calculate gcd
$$(a,b)$$
.
The next theorem will be the
basis for the Euclidean Algorithm
Theorem: Let a and b be
positive integers and $0 \le a \le b$.
Suppose $b = aq + r$ where
 $r,q \in \mathbb{Z}$ and $0 \le r \le a$.
Then,
 $gcd(b,a) = gcd(a,r)$
We replace
this problem
with a smaller problem

EX: Calculate gcd (138,62) 62 138 138=62(2)+14 124 Theorem says: gcd(138,62) = gcd(62,14)Kepeat the process: 1462 62 = 14(4) + 6- 56 Theorem says: 9cd(62,14) = gcd(14,6)Repeat the process: |4 = 6(2) + 2Theorem says: 9cd(14,6) = 9cd(6,2)

Repeat the process: 6 = 2(3) + 0Theorem says: g(d(6,2) = g(d(2,0))Summary: 9cd(138,62) = 9cd(62,14) = 9cd(14,6)= qcd(6,2) = qcd(2,0) = 215 Wer: gcd(138,62) = 2

proof of theorem: Let a, b EZ and O<a≤b. Use the division algorithm to Write b = aq + r with $0 \leq r < q$. Let d = gcd(b, a)and d' = ycd(a, r). Our goal is to show d=d. Step 1: Let's show d'≤d. Since d'=gcd(a,r) we know d'la and d'lr. So, a = d'm and r=d'n where m, nEZ.

Ergo, b = aq + r= d'mq + d'n $= q_{(md+v)}$ this is an integer because M, J, n are integers. Consequently, d'[b. Thus, d'Ib and d'Iq. So, d'is a positive common divisor of b and a. But d is the greatest pusitive

where
$$divisor$$
 of b and a .
Thus, $d' \leq d$.
Step 2: Let's show $d \leq d'$
Since $d = gcd(a,b)$ we know
 dla and dlb .
Hence,
 $a = ds$ and $b = dt$
where $s, t \in \mathbb{Z}$.
It follows that
 $r = b - aq$
 $= dt - dsq$

$$= d [t - sq]$$

$$= d [t - sq]$$

$$= d [t - sq]$$

$$= d [a is an integer since t_{s,q} \in \mathbb{Z}]$$
So, d[r.
$$= d [a and d]r.$$

$$= d [a and d]r.$$
Since d'= gcd (a,r) we
$$= Know d \leq d'.$$

Therefore, since $d \leq d$ and $d \leq d'$, we may conclude that d = d'.

Evelidean Algorithm (Finds gcd(b,al) Let a and b be positive integers with OKa≤b. Stepl: Divide a into b to get b = aqtcwith $0 \leq r < \alpha$. Step 2: If r=0, then you're done. The answer is a. If r = 0, then repeat step | but with b replaced by a and a replaced by c.

While loop $\alpha = \#_j$ b = #;r = remainder [b, a]; While (r=+0) $b = \alpha_j$ $\alpha = (\hat{})$ r=remainder [b,a]; Print [n];

Recursion method $qcd(b, \alpha) := [$ r=remainder b,a); TF | r=0return (a); else return [gcd(a,r)];

Ex: Find gcd (578,153)

 $578 = 3 \cdot 153 + 119$ $153 = 1 \cdot 119 + 34$ $119 = 3 \cdot 34 + 17$ $34 = 2 \cdot 17 + 07$ Answer 9cd(578, 153) = 17

g(d(578,153))= g(d(153,119))= g(d(119,34))= g(d(34,17))= g(d(17,0))= 17

So, I<a<n since all. Since aln we know n = ab where $b \in \mathbb{Z}$. Since a &n me positive, so is b. We have $b = \frac{\pi}{\alpha}$. Then, $| < \frac{n}{a} = b$ because a < hAnd, $b = \frac{n}{a} < n$ because 1< So, | < b < n, | < a > b < n S_{o} | < b < n. Sp, N = ab where | < a < n, | < b < n. $\overline{}$