Math 4460

$$
2 / 6 / 23
$$

Theorem (The division algorithm) Let $a, b \in \mathbb{Z}$ with $b>0$.
Then there exist unique integers q, r where $a=q b+r$ and $O \leq r<b$.
proof: Let $a, b \in \mathbb{Z}$ with $b>0$.
Consider the set

$$
\begin{aligned}
& \text { Consider the set } \\
& T=\{a-x b \mid x \in \mathbb{Z} \text { and } a-x b \geqslant 0\}
\end{aligned}
$$

Ex: $a=10, b=3$

$$
\begin{aligned}
& \text { Ex: } a=10, b=5 \\
& a-2 b=10-2(3)=4 \geqslant 0 \leftarrow 4 \in T \\
& a-3 b=10-3(3)=1 \geqslant 0 \leftarrow 1 \in T \\
& a-4 b=10-4(3)=-2 \geqslant 0 \leftarrow-2 \notin T
\end{aligned}
$$

Claim: T is not empty
proof of claim:
case l: Suppose $a=0$.
Then, if you set $x=0$, then

$$
a-x b=0-0 b=0 \geqslant 0
$$

So, $O \in T$.
case 2: Suppose $a>0$.
Set $x=-1$, and get

$$
\begin{aligned}
& \text { Set } x=a-(-1) b=a+b>0 \\
& a-x b=a
\end{aligned}
$$

So, $a+b \in T$
case 3: Suppose $a<0$.
Set $x=2 a$ and get

$$
\text { Set } x=2 a
$$

So,

$$
a-2 a b \in T
$$

$a<0 \quad b \geqslant 1$

$$
-2 b \leq-2
$$

$$
\begin{aligned}
& 1-2 b \leq-1 \\
& 1-2 b<0
\end{aligned}
$$

Thus, $T \neq \phi$
claim

Since T is not empty and every element of T is non-negative, T must have a smallest element.
Let r be the smallest element of T.
So, $r \leqslant t$ for all $t \in T$.
Since r is in T we can write $r=a-q b$ where $q \in \mathbb{Z}$
[I'musing q instead of x]
Thus, $a=q b+r$
Is $0 \leqslant r<b$

We know $0 \leq r$ because $r \in T$. Why is $r<b$
Let's rule out $r \geqslant b$.
Suppose $r \geqslant b$.
Then, $r-b \geqslant 0$ and

$$
r-b=(a-b q)-b=\underbrace{a}_{\begin{array}{c}
a-(q+1) b \\
\text { of the form } \\
a-x
\end{array}}
$$

Then $r-b \in T$.
But then $0 \leq r-b<r$
This contradicts that r is the smallest element of T.

Thus, $r<b$.
So, $a=q b+r$ and $0 \leq r<b$.

What about uniqueness?
Suppose $a=q b+r$ and $a=q^{\prime} b+r^{\prime}$ where $0 \leqslant r<b$ and $0 \leqslant r^{\prime}<b$ and $q, q^{\prime}, r, r^{\prime} \in \mathbb{Z}$.
Let's show $q=q^{\prime}$ and $r=r$ ' Goal
Without loss of generality assume $r^{\prime} \leq r$. means: same proof if $r \leq r^{\prime}$
Subtract $a=q b+r$ and $a=q^{\prime} b+r^{\prime}$
to get

So,

$$
\begin{aligned}
& \text { get } \\
& 0=\left(q-q^{\prime}\right) b+\left(r-r^{\prime}\right)
\end{aligned}
$$

$$
\left(q^{\prime}-q\right) b=r-r^{\prime}
$$

Thus, b divides $r-r^{\prime}$.

Recall $0 \leq r^{\prime} \leq r<b$.
Subtract by r^{\prime} to get

$$
\bar{O} \leqslant r-r^{\prime}<b-r^{\prime} \leqslant b
$$

Thus,

$$
0 \leq r-r^{\prime}<b
$$

But b divides $r-r^{\prime} \prod_{0}$
Thus, $r-r^{\prime}=0$.
So, $r=r^{\prime}$.
Plug $r-r^{\prime}=0$ into $0=\left(q-q^{\prime}\right) b+\left(r-r^{\prime}\right)$ to get $0=\left(q-q^{\prime}\right) b$.
So either $q-q^{\prime}=0$ or $b=0$.
But $b>0$.

So, $q-q^{\prime}=0$
Thus, $q=q^{\prime}$
We've proved uniqueness.

$$
\begin{array}{r}
D I V I S \mid O N \\
A C G . \\
\hline
\end{array}
$$

Theorem: Let $a, b \in \mathbb{Z}$, not both zero. Then there exist integers x_{0}, y_{0} where

$$
\operatorname{gcd}(a, b)=a x_{0}+b y_{0}
$$

proof:
Let $a, b \in \mathbb{Z}$, not both equal to zero.
Define the following set

$$
\begin{aligned}
& \text { exine the following set } \\
& S=\{a x+b y \mid x, y \in \mathbb{Z}\}
\end{aligned}
$$

$$
\begin{aligned}
=\{ & \underbrace{10 a+12 b}_{x=10, y=12}, \underbrace{1 \cdot a+0 \cdot 6}_{x=1, y=0}, \\
& \underbrace{2 a-10000 b, \ldots 0}_{x=2, b=-10000}\}
\end{aligned}
$$

Note that

$$
\begin{aligned}
a & =a(1)+b(0) \\
-a & =a(-1)+b(0) \\
b & =a(0)+b(1) \\
-b & =a(0)+b(-1)
\end{aligned}
$$

ace all in S.
Since $a,-a, b,-b \in S$ and a and b are not both zero, S must contain at least one positive integer.
Let d be the smallest positive integer in S.
Then, $d=a x_{0}+b y_{0}$ where $x_{0}, y_{0} \in \mathbb{Z}$.

Now we show d is the gad of a and b and we are done.

First let's show that d is a common divisor of a and b.
Let's show da.
By the division algorithm we can write $a=d q+r$ where $0 \leq r<d$ where $q, r \in \mathbb{Z}$.

Let's show $r=0$.
Note that

$$
\begin{aligned}
r & =a-d q \\
& =a-\left(a x_{0}+b y_{0}\right) q
\end{aligned}
$$

saying

$$
r \text { is }
$$

$$
\text { in } S
$$

So $r \in S$.
But also $0 \leq r<d$.
Since d is the smallest positive integer in S, this forces $r=0$.
Thus, $a=q d+r=q d$.
So, dea.
Similarly you can show $d l b$.
So, d is a common divisor of a and b.
Why is d the greatest common divisor of a and $b P_{0}$
Suppose d^{\prime} is another common divisor of a and b.

We must show $d^{\prime} \leq d$.
Since $d^{\prime} \mid a$ and $d^{\prime} \mid b$ we know $a=d^{\prime} k$ and $b=d^{\prime} l$ where $k, l \in \mathbb{Z}$.
Then,

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
d=a x_{0}+b y_{0} & =\left(d^{\prime} k\right) x_{0}+\left(d^{\prime} l\right) y_{0} \\
& =d^{\prime}\left[k x_{0}+l y_{0}\right]
\end{aligned}
\end{aligned}
$$

So, d' divides d.
Since d^{\prime} / d and d and d^{\prime} ane both positive $d^{\prime} \leq d$.

So, $d=\operatorname{gcd}(a, b)$.
D NNE

