Math 4460 2/6/23

Theorem (The division algorithm)
Let
$$a,b \in \mathbb{Z}$$
 with $b \neq 0$.
Then there exist unique integers q,r
where $a = qb + r$
and $0 \leq r < b$.
Proof: Let $a,b \in \mathbb{Z}$ with $b \neq 0$.
Consider the set
 $T = \left\{a - xb\right\} \times \in \mathbb{Z}$ and $a - xb \neq 0$
Ex: $a = 10, b = 3$
 $a - 2b = 10 - 2(3) = 4 \neq 0 \neq -4 \in T$
 $a - 3b = 10 - 3(3) = 1 \neq 0 \neq -2 \notin T$
Claim: T is not empty
Proof of claim:

case 1: Suppose
$$a=0$$
.
Then, if you set $x=0$, then
 $a-xb = 0-0b=0 \ge 0$
So, $0 \in T$.
case 2: Suppose $a>0$.
Set $x=-1$, and get
 $a-xb = a-(-1)b=a+b>0$
So, $a+b \in T$
case 3: Suppose $a<0$.
Set $x=2a$ and get
 $a-xb = a-2ab = a(1-2b) > 0$
So,
 $a<0$ $b\ge 1$
 $-2b \le -2$
 $1-2b \le -1$
 $1-2b < 0$
Thus, $T \neq \phi$ Claim

Since T is not empty and every element of T is non-negative, T must have a smallest element. Let r be the smallest element of T. So, r<t for all teT. Since r is in T we can write r = a - qb where $q \in \mathbb{Z}$ [Imusing q instead of x] Thus, a = qb + r. Is o≤r<b

We know
$$0 \le r$$
 because $r \in [$.
Why is $r < b$?
Let's rule out $r \ge b$.
Suppose $r \ge b$.
Then, $r - b \ge 0$ and
 $r - b = (a - bq) - b = a - (q + 1)b$
of the form
 $a - \times b$
Then $r - b \in T$.
But then $0 \le r - b \le r$
This contradicts that r is the smallest
element of T .
Thus, $r < b$.
So, $a = qb + r$ and $0 \le r < b$.

What about uniqueness
$$\mathcal{P}$$

Suppose $a = qb+r$ and $a = q'b+r'$
where $0 \leq r < b$ and $0 \leq r' < b$
and $q_{j}q', r, r' \in \mathbb{Z}$.
Let's show $q = q'$ and $r = r'$. (Foal)
Without loss of generality assume $r' \leq r$.
means: same proof if $r \leq r'$
Subtract $a = qb+r$ and $a = q'b+r'$
to get
 $0 = (q - q')b + (r - r')$
So,
 $(q'-q)b = r - r'$
Thus, b divides $r - r'$.

Recall
$$0 \le r' \le r < b$$
.
Subtract by r' to get
 $0 \le r - r' < b - r' \le b$

Thus,

$$0 \le r - r' \le b$$

But b divides $r - r'$
Thus, $r - r' = 0$.
So, $r = r'$.
Plug $r - r' = 0$ into $0 = (q - q')b + (r - r')$
to get $0 = (q - q')b$.
So either $q - q' = 0$ or $b = 0$.

So, q-q'=0
Thus, q=q'
We've proved uniqueness.
DIVISION
ALG.
Theorem: Let a, b \in Z, not both zero.
Then there exist integers xo, yo
where
gcd(a,b) = a xo + byo
gcd(a,b) = a xo + byo
proof:
Let a, b \in Z, not both equal to zero.
Define the following set

$$S = \{ a x + by | x, y \in Z \}$$

$$= \sum_{x=10}^{2} |0a+12b_{y}| |a+0.b_{y}|$$

$$x=10, y=12 \qquad x=1, y=0$$

$$Za - 10000b_{y} \cdots \sum_{x=2, b=-10000}^{2}$$
Note that
$$a = a(1) + b(0)$$

$$-a = a(-1) + b(0)$$

$$b = a(0) + b(1)$$

$$-b = a(0) + b(-1)$$
are all in S.
Since $a_{y} - a_{y}b_{y} - b \in S$ and a and b
are not both zero, S must contain
at least one positive integer.
Let d be the smallest positive
integer in S.
Then, $d = a \times 0 + b \times 0$ where $X_{0,y_{0}} \in \mathbb{Z}$

Now we show d is the gcd of a and b and we are done. First let's show that d is a common divisor of a and b. Let's show dla. we can By the division algorithm OErcd write a=dqtr where where q,rEZ. Let's show r=0. Note that $= \alpha - (\alpha x_0 + b y_0) q$ $= \alpha (1 - x_0 q) + b (-y_0 q)$ form $\alpha x + 1$ $r = \alpha - dq$

We must show
$$d' \leq d$$
.
Since d' | a and d' | b we know
 $a = d'k$ and $b = d'l$
where $k, l \in \mathbb{Z}$.

Then, $d = a \times b = (d'k) \times b + (d'l) = d' [k \times b + l = d' [k \times b + l = d']$

So, d'divides d.
Since d'Id and d and d'
are both positive
$$d' \leq d$$
.

So,
$$d = gcd(a,b)$$
.