Math 4460

$$
2 / 27 / 23
$$

Theorem: Let $a, b \in \mathbb{Z}$ with $a, b \geqslant 1$ Suppose $\operatorname{gcd}(a, b)=1$ and

$$
a b=c^{n}
$$

where $c, n \in \mathbb{Z}$ and $c, n \geq 1$.
Then there exist $d, e \in \mathbb{Z}$
with $d, e \geqslant 1$ where
$a=d^{n}$ and $b=e^{n}$.
Proof: Suppose $\operatorname{gcd}(a, b)=1$
and $c^{n}=a b$.
$a=1^{n}$

$$
b=c^{n}
$$

If $a=1$, set $d=1$ and $\begin{aligned} & a=1 \\ & e=c \\ & b=1\end{aligned}$
If $b=1$, set $\frac{d=c}{a=c^{n}}$ and $\underbrace{e=1}_{b=1^{n}}$
So we can assume $a \geqslant 2, b \geqslant 2$.
Since $\operatorname{gcd}(a, b)=1$ we know the Prime factors of a and b are distinct.
$\left.\begin{array}{l}\text { Thus we may may write } \\ \qquad a=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}} \\ \text { and } b=p_{r+1}^{a_{r+1}} p_{r+2}^{a_{r+2}} \ldots p_{r+s}^{a_{r+s}}\end{array}\right] \phi$
Ex:
where $p_{1}, p_{2}, \ldots, p_{r}, p_{r+1}, \ldots, p_{r+s}$
ane distinct primes and a_{1}, \ldots, a_{r+s} ore positive integers, $r \geqslant 1, s \geqslant 1$.
Suppose that

$$
c=q_{1}^{b_{1}}, q_{2}^{b_{2}} \cdots q_{k}^{b_{k}}
$$

is the prime factorization of C where $q_{1}, q_{2}, \ldots, q_{k}$ we distinct primes and $b_{1}, b_{2}, \ldots, b_{k}$ che positive integers.
Since $a b=c^{n}$ we get that

$$
\begin{aligned}
& p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} p_{r+1}^{a_{r+1}} p_{r+2}^{a_{r+2}} \cdots p_{r+s}^{a_{r+s}} \leftarrow a b \\
&=q_{1}^{n b_{1}} q_{2}^{n b_{2}} \ldots q_{k}^{n b_{k}} \leftarrow c^{n}
\end{aligned}
$$

By the fundamental theorem of arithmetic the left factorization and the right fuctorization are the same up to reordering the primes.
Thus, $r+s=k$, and the primes q_{j} ane the same as the primes p_{i} (except for the ordering possibly) and the cor responding exponents are the same.
Thus we may renumber/reorden the q's so that

$$
\begin{aligned}
& \text { the } q^{\prime s} \\
& q_{j}=p_{j} \text { for } \quad \mid \leq j \leq r+s
\end{aligned}
$$

Then, $a_{j}=n b_{j}$ for $1 \leq j \leq r+s$
Then,

$$
\begin{aligned}
a=p_{1}^{a_{1} a_{2} \cdots p_{r}} & =q_{1}^{a_{1} q_{1} q_{2} \cdots q_{r}^{n b_{2}}} \\
& =\underbrace{\left(q_{1}^{b_{1}} q_{2}^{b_{2}} \cdots q_{r}^{b_{r}}\right.}_{d})^{n}
\end{aligned}
$$

And

$$
\left.\begin{array}{rl}
b=p_{r+1}^{a_{r+1}} p_{r+2}^{a_{r+2}} \cdots p_{r+s}^{a_{r+s}} & =q_{r+1}^{n b_{r+1}} q_{r+2} q_{r+2} \cdots q_{r+s} b_{r+s} \\
& =\underbrace{\left(q_{r+1} q_{r+1} q_{r+2} \cdots q_{r+s}^{b_{r+s}}\right.}_{e})^{n}
\end{array}\right)
$$

$$
\text { and we get } a=d^{n}, b=e^{n}
$$

How 3
I(a) Given $a, b \in \mathbb{Z}$ with $b \neq 0$ there exist $x, y \in \mathbb{Z}$ with $y \neq 0$ where $\frac{a}{b}=\frac{x}{y}$ and $\operatorname{gcd}(x, y)=1$.

$$
\left.\begin{array}{l}
\frac{\text { Ex: }}{} a=25, b=10 \\
\frac{a}{b}=\frac{25}{10}=\frac{5}{2}=\frac{x}{y}
\end{array}\right\} \begin{aligned}
& x=5 \\
& y=2
\end{aligned}
$$

$\operatorname{gcd}(5,2)=1$
proof: Let $d=\operatorname{gcd}(a, b)$.
Set $x=\frac{a}{d}$ and $y=\frac{b}{d}$
By a previous theorem,

$$
\operatorname{gcd}(x, y)=\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1
$$

And

$$
\frac{x}{y}=\frac{a / d}{b / d}=\frac{a}{b}
$$

HF 3
(1)(d) Let p be a prime. Prove that \sqrt{p} is irrational.

$$
\underbrace{}_{\begin{array}{c}
\text { not a rational } \\
\text { number }
\end{array}}
$$

proof: Lets do a proof by contradiction.

Suppose \sqrt{p} is rational.
By problem ((a) this implies that $\sqrt{p}=\frac{x}{y}$ where $x, y \in \mathbb{Z}$, $y \neq 0$ and $\operatorname{gcd}(x, y)=1$.
By squaring we get $p=\frac{x^{2}}{y^{2}}$ or $p y^{2}=x^{2} \quad(*)$
$(*)$ tells us that $p \mid x^{2}$.
Since p is prime and $p \mid x \cdot x]$,
We know that $p \mid x$.
We used:
prime and plat \rightarrow pla or alb

Thus, $x=p k$ where $k \in \mathbb{Z}$.
Plug this hack in to $(*)$ to get

$$
p y^{2}=(p k)^{2}
$$

So, $y^{2}=p k^{2}$.
Thus, $p l y^{2}$.
Since p is prime and $p / y \cdot y$
we know ply.
Thus, $p \mid x$ and $p \mid y$.
So, $\operatorname{gcd}(x, y) \geqslant p \geqslant 2$
This contradicts $\operatorname{gcd}(x, y)=1$.
Therefore \sqrt{P} is irrational

TOPIC 4 - Integers modulo
Def: Let $n \in \mathbb{Z}$ with $n \geqslant 2$. Let $x, y \in \mathbb{Z}$.
We say that x is congruent to y modulo n if n divides $x-y$, and write $x \equiv y(\bmod n)$.
If n does not divide $x-y$ then we write $x \not \equiv y(\bmod n)$.

Ex: $n=5$

$$
\begin{aligned}
& x=312, y=107 \\
& x-y=312-107=205=5.41
\end{aligned}
$$

Thus, $5 \mid(312-107)$ and so

$$
312 \equiv 107(\bmod 5)
$$

They ane a multiple of 5 apart from each other.
$E x: n=6$

$$
\begin{aligned}
& x=-10 \quad y=21 \\
& x-y=-10-21=-31
\end{aligned}
$$

and $6 \times(-31)$.
So, $-10 \neq 21(\bmod 6)$.

Ex: $n=3$

