Math 4460 2/27/23

Theorem: Let
$$a, b \in \mathbb{Z}$$
 with $a, b \ge 1$
Suppose $gcd(a, b) = 1$ and
 $ab = c^n$
where $c, n \in \mathbb{Z}$ and $c, n \ge 1$.
Then there exist $d, e \in \mathbb{Z}$
with $d, e \ge 1$ where
 $a = d^n$ and $b = e^n$.
 $proof:$ Suppose $gcd(a, b) = 1$
and $c^n = ab$.
 $a = 1$, set $d = 1$ and $e = c$.
If $a = 1$, set $d = 1$ and $e = c$.
If $b = 1$, set $d = c$ and $e = 1$.
 $a = c^n$
So we can assume $a \ge 2$, $b \ge 2$.
Since $gcd(a, b) = 1$ we know the
Prime factors of a and b are distinct

Thus we may may write $a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ $a = p_1^{\alpha_r+1} p_1^{\alpha_r+2} \cdots p_r^{\alpha_r+s}$ and $b = p_{r+1}^{\alpha_r+1} p_{r+2}^{\alpha_r+2} \cdots p_{r+s}^{\alpha_r+s}$ $b = 13^2 \cdot 11^4$ $b = 13^2 \cdot 11^4$ $p_4^{\alpha_5} p_4^{\alpha_5}$ where PijPz,..., Pr, Pr+1, ..., Pr+5 one distinct primes and any ..., arts ane positive integers, r>1, s>1. Suppose that is the prime factorization of c Where gigginging the one distinct primes and bi, bij , by one positive integers.

Since ab = c we get that

$$P_{1}^{a_{1}} P_{2}^{a_{2}} \cdots P_{r}^{a_{r+1}} P_{r+1}^{a_{r+2}} \cdots P_{r+s}^{a_{r+s}} = ab$$

$$= q_{1}^{nb_{1}} q_{2}^{nb_{2}} \cdots q_{k}^{nb_{k}} + c^{n}$$
By the fundamental theorem of arithmetic the left factorization are the same vp to reordering the primes. Thus, $r+s=k$, and the primes P_{j} and the same as the primes P_{j} and the corresponding exponents and the same. Thus we may renumber/reorder the same. Thus we may renumber/reorder the q's so that $q_{j} = P_{j}$ for $1 \leq j \leq r+s$.

Then,
$$a_{j} = nb_{j}$$
 for $1 \le j \le r+s$.
Then,
 $a = p_{1} p_{2} \cdots p_{r}^{a_{r}} = q_{1} q_{2} \cdots q_{r}^{b_{r}}$
 $= (q_{1}^{b_{1}} q_{2}^{b_{2}} \cdots q_{r}^{b_{r}})^{n}$
 d
And
 $b = p_{r+1}^{a_{r+2}} p_{r+2}^{a_{r+3}} = q_{r+1}^{nb_{r+1}} nb_{r+2} nb_{r+3}^{b_{r+3}}$
 $= (q_{r+1}^{b_{r+2}} \cdots q_{r}^{b_{r+3}} = q_{r+1}^{a_{r+3}} q_{r+2}^{a_{r+3}} \cdots q_{r+s}^{b_{r+s}})^{n}$
Set
 $d = q_{1}^{b_{1}} q_{2}^{b_{2}} \cdots q_{r}^{b_{r}}$ and $e = q_{r+1}^{b_{r+1}} q_{r+2}^{b_{r+3}} \cdots q_{r+s}^{b_{r+s}}$
and we get $a = a^{n}$, $b = e^{n}$ EV

HW 31 a, b e Z with b = 0 [[(a)] Given x, y EZ with y = 0 there exist where $\frac{a}{b} = \frac{x}{y}$ and gcd(x,y) = [.Ex: $\alpha = 25, b = 10$ $\frac{\alpha}{b} = \frac{25}{10} = \frac{5}{2} = \frac{x}{y} \begin{cases} x=5\\ y=2 \end{cases}$ Gcd (5,2) = | proof: Let d=gcd (a,b). Set $X = \frac{\alpha}{d}$ and $y = \frac{b}{d}$ Ky a previous theorem,

9cd
$$(X,y) = gcd \left(\frac{a}{d}, \frac{b}{d}\right) = 1$$

And
 $\frac{X}{y} = \frac{a/d}{b/d} = \frac{a}{b}$.
 $f(d)$ Let p be a prime.
Prove that Vp is irrational.
Not a rational
hymber
 $\frac{proof}{contradiction}$.

Suppose
$$\sqrt{p}$$
 is rational.
By problem [(a) this implies
that $\sqrt{p} = \frac{x}{y}$ where $x, y \in \mathbb{Z}$,
 $y \neq 0$ and $gcd(x,y) = 1$.
By squaring we get $p = \frac{x^2}{y^2}$
or $py^2 = x^2$ (*)
(*) tells us that $p|x^2$.
Since p is prime and $p|x \cdot x$
We know that $p|x$.
We vsed:
prime and plab $\rightarrow pla$ or plb

Thus,
$$X = Pk$$
 where $k \in \mathbb{Z}$.
Plug this back into (k) to get
 $Py^2 = (pk)^2$

So,
$$y^2 = pk^2$$
.
Thus, $p|y^2$.
Since p is prime and $p|y\cdot y$
We know $p|y$.
Thus, $p|x$ and $p|y$.
So, $gcd(x,y) \ge p \ge 2$
This contradicts $gcd(x,y)=1$.
Therefore \sqrt{p} is irrational

TOPIC 4 - Integers modulon Def: Let nEZ with NZZ. Let X, Y E Z. We say that x is congruent to y modulo n if n divides X-Y, and write $X \equiv Y \pmod{n}$. If n does not divide X-y then we write $x \neq y \pmod{n}$.

Ex: n=5x = 312, y = 107X - Y = 312 - 107 = 205 = 5.41Thus, 5 (312-107) and so 312 = 107 (mod 5)

They are a multiple of 5 apart from each other.

Ex: n=3-7-6-5-9-3-2(1)4 5 6 7 8

 $-8 \equiv -5 \pmod{3} \quad 8 \equiv 2 \pmod{3} \quad 9 \equiv 3 \pmod{6}$ $-2 \equiv -8 \pmod{3} \quad 5 \equiv -4 \pmod{3} \quad -6 \equiv 6 \pmod{6}$ $| \equiv -5 \pmod{3} \quad -7 \equiv 5 \pmod{3} \quad -6 \equiv 3 \pmod{6}$ $y = 7 \pmod{3}$ 0 e