Math 4460 2/20/23

Proof of theorem from Weds:
Let
$$a,b,c \in \mathbb{Z}$$
.
Suppose a and b are not both zero.
Let $d=gcd(a,b)$.
D (=) Suppose there exist $x,y \in \mathbb{Z}$
where $ax + by = c$
where $ax + by = c$
The goal will be to show that $d[c$.
The goal will be to show d[a and d]b.
Since $d=gcd(a,b)$ we know d[a and d]b.
Thus, $a=dk$ and $b=dk'$ where $k,k' \in \mathbb{Z}$.
Hence,
 $c=ax+by$
 $= d[x+by]$
 $= d[x+by]$
 $= d[x+by]$
this is an integer
because $k, x, k', y \in \mathbb{Z}$

(2) Suppose axtby=c has integer solutions and Xo, Yo EZ is a particular solution. That is, ax. + by. = c. Our goal is to show that all the solutions are of the form $X = X_{o} - t(\frac{b}{d}) \qquad (*)$ $Y = Y_{o} + t(\frac{a}{d})$ where tEZ. First let's check that (*) gives a solution to axtby=c by plugging it in to the left

We have that $\begin{array}{c} \alpha \left(X_{0}^{-} t \frac{b}{d} \right) + b \left(Y_{0} + t \frac{a}{d} \right) \\ \times \end{array}$ $= ax_o - tab + by_o + tab$ = ax, t by, particular = c = C But why does (*) give vs all the solutions assuming axotby = C. Me arc X, y E Z is another Suppose that is, axtby=c. solution,

Subtracting these two equations
gives
$$a(x-x_0) + b(y-y_0) = 0$$

Dividing by d gives
 $\frac{a}{d}(x-x_0) + \frac{b}{d}(y-y_0) = 0$
 $\frac{a}{d}(x-x_0) + \frac{b}{d}(y-y_0) = 0$

Thus, $\frac{G}{d}(X-X_{o}) = -\frac{b}{d}(Y-Y_{o})$

Multiplying by -1 giver

$$\frac{\alpha}{d}(X_{o}-X) = \frac{b}{d}(Y-Y_{o}) \quad (**)$$

$$(\pm\pm)$$
 tells us that $\frac{a}{d} \left(\frac{b}{d} (y-y_0) \right)$

We know from a previous theorem
that
$$gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$$
.
Thus, from another previous theorem,
since $gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$ and $\frac{a}{d}\left[\frac{b}{d}(y-y_0)\right]$
we know that $\frac{a}{d}\left[(y-y_0)\right]$.

Hence, thus, ergo there existr $t \in \mathbb{Z}$ where $y - y_0 = t(\frac{a}{d})$.

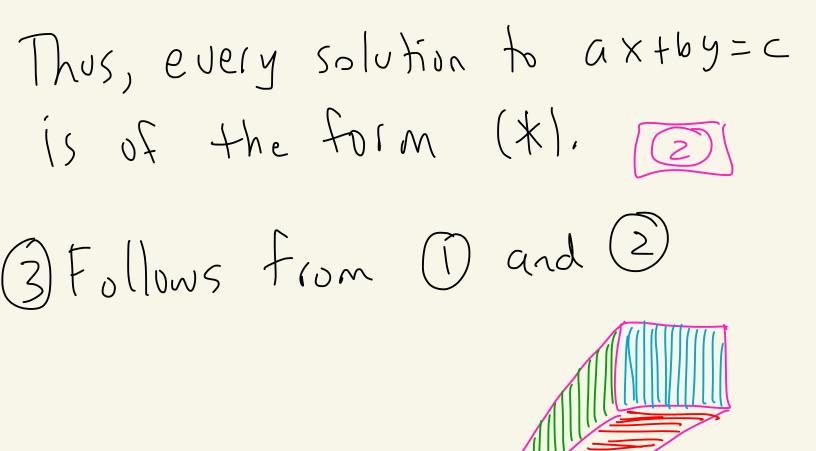
So,
$$y = y_0 + t(\frac{a}{d})$$

Plug $y - y_0 = t(\frac{a}{d})$ into $(**)$
to get that
 $\frac{a}{d}(x_0 - x) = \frac{b}{d}(t(\frac{a}{d}))$
 $y - y_0$

$$\chi_{0} - \chi = t\left(\frac{b}{d}\right)$$

Hence,

$$\chi = \chi_0 - t(\frac{b}{d})$$



$$E_{X}: (HW 2 \# 4(f))$$
Solve $39x + 17y = 22$
What is $gcd(39, 17)$?
$$39 = 2 \cdot 17 + 5$$

$$17 = 3 \cdot 5 + 2$$

$$5 = 2 \cdot 2 + (1)$$

$$4 = 2 \cdot 1 + 0$$

Since gcd(39,17) = 1 divides 22 there must exist integer solutions to 39x+17y=22

Let's find a particular solution. Solve the first 3 equations above for the remainders. 5 = [.39 - 2.17]2 = [.7 - 3.5]|= [.5 - 2.2] + Start here So, gcd(39,17) $| = | \cdot 5 | - 2 \cdot 2$ $= |\cdot (|\cdot 39 - 207) - 2\cdot (|\cdot 7 - 3.5)$ = |.39 - 4.17 + 6.5

$$= [\cdot 39 - 4 \cdot 7 + 6 \cdot (1 \cdot 39 - 2 \cdot 7)]$$

= 7 \cdot 39 - 16 \cdot 7

Thus,

$$39(7) + 17(-16) = 1$$

Multiply by 22 to get

$$39(154) + 17(-352) = 22$$

 $7.22 - 16.22$

Thus a particular solution to $39 \times + 17 = 22$

is
$$X_0 = 154$$
, $Y_0 = -352$
Thus, every solution to
 $39 \times + 17y = 224$ $ax+by=c$
 $d=1$
 $c=22$
 $a=39$
 $b=17$
 $x = 154 - t(\frac{17}{1}) = 154 - 17t$
 $X_0 - t(\frac{39}{1}) = -352 + 39t$
 $Y_0 + t(\frac{39}{1})$

Plug in different & such as t=0, 1, -1, 2, -2, ... to get come solutions.