Math 4460 2/13/23

The Euclidean algorithm

can also be used

to find a solution

to the equation

axtby = gcd(a,b)

Ex: Last time we saw that gcd(578,153) = 17. Let's find x,y where 578x+153y=17

Step1: Vsc the Evolidean algorithm

578 = 3.153 + 119 153 = 1.119 + 34 119 = 3.34 + 1734 = 2.17 + 0

From Weds last Week Step 2: Disregard the last equation that has remainder r=0. Rewrite the other equations so that the remainder is on the left-hand side, that is solve for the remainder in each equation.

|19 = |.578 - 3.153 34 = |.153 - |.11917 = |.119 - 3.34

Step 3: Now start at the bottom equation (the one with the gcd) and back-substitute in using the equations above it until you are left with an expression of the form axtby

$$17 = |.||9| - 3.34$$

$$= |.(|.578 - 3.|53)$$

$$-3.(|.|53 - |.||9)$$

$$119 = |.578 - 3.153$$

 $34 = |.153 - |.119$
 $17 = |.119 - 3.34$
Previous page

$$=1.578-3.153-3.153+3.119$$

$$=1.578-6.153+3.119$$

$$=1.578-6.153+3.(1.578-3.153)$$

$$=1.578-6.153+3.578-9.1531$$

$$= 4.578 - 15.153$$

$$50$$
, $4.578-15.153=17$

Thus,

So, a solution to
$$578 \times 41539 = 17$$
is $x = 4$ and $y = -15$.

Ex: Let

$$a = 60 = 10.6$$
 $b = 350 = 10.35$
 $d = 9 cd(a, b) = 9 cd(60, 350) = 10$
 $g(d(\frac{a}{d}, \frac{b}{d})) = 9 cd(\frac{60}{10}, \frac{350}{10})$
 $= 9 cd(6, 35)$
 $= 1$

Idea: If you divide a & b by their gcd, the resulting numbers have gcd I. Youre removing all the common factors. Theorem: Let $a_1, a_2, ..., a_n$ be integers, not all equal to zero. Let $d = \gcd(a_1, a_2, ..., a_n)$. Then, $\gcd(\frac{a_1}{d}, \frac{a_2}{d}, ..., \frac{a_n}{d}) = 1$

Special case when n=2?

Let $a, b \in \mathbb{Z}$, not both \mathbb{Z} ero.

Let $d=\gcd(a,b)$.

Then, $\gcd(\frac{a}{d}, \frac{b}{d})=1$

Proof: We will prove the n=2 case. Look at the unline notes if you want to see the general proof. Let $a,b \in \mathbb{Z}$, not both zero. Let $d=\gcd(a,b)$. Let $d=\gcd(\frac{a}{d},\frac{b}{d})$.

Our goal is to show that d'=1. Since d=gcd(a,b) we know dla and 11b. So, a = dx and b = dy where $x,y \in \mathbb{Z}$ Then, $d' = gcd\left(\frac{\alpha}{d}, \frac{b}{d}\right) = gcd\left(\frac{x}{y}\right)$ Consequently, $d' \mid x$ and $d' \mid y$.

Then, $d' = gcd\left(\frac{x}{y}\right)$ Since $d' = gcd\left(\frac{x}{y}\right)$ Hence, X=d's and y=d't where s,teZ. Thus, $\alpha = dx = dd's$ b = dy = dd'tSo, dd' is a common factor of a and b. Note d? | and d'? | and so dd'? |.

def of

ged

ged

positive integer

However, d is the greatest common divisor of a and b.

Ergo, dd' < d

Divide by d to get $d' \leq 1$ Since $1 \leq d'$ and $d' \leq 1$ We know d' = 1. Theorem: Let a,b,c E / with c + 0. If gcd (c,a)=1 and < |ab, then c b. Ex: 3 30 $3 \mid 5.6 \rightarrow 3 \mid 6$ 1 A A B gcd(3,5)=1

Proof: Suppose $gcd(c, \alpha) = 1$ and clab. Since $gcd(c, \alpha) = 1$ we know there exist $x_0, y_0 \in \mathbb{Z}$ where $1 = cx_0 + \alpha y_0$

Since clab there exists REZ where ab = ck. Multiply (=cx, +ay, by b to get b=cbx. +aby. Sub in ab = ck to get b = cb x o + ck y o. Thus, $b = c \left[b x_0 + k y_0 \right]$ this is an integer Therefore, c/b.

GCD METHODS

- $\int d \alpha d b$
- 2) If d'/a and d'/b

 $3) ax_0 + by_0 = d for$