$$
\text { math } 4460
$$

$$
1 / 25 / 23
$$

Proposition: Let $z, a, b, x, y \in \mathbb{Z}$ with $z \neq 0$.
If $z \mid a$ and $z \mid b$,
then $z \mid(x a+y b)$.
proof: Suppose $z \mid a$ and $z \mid b$.
Then, $a=z k$ and $b=z h$ where $k, h \in \mathbb{Z}$
So,

$$
\begin{align*}
x a+y b & =x(z k)+y(z h) \tag{*}\\
& =z[x k+y h]
\end{align*}
$$

Since $x, k, y, h \in \mathbb{Z}$ we know $x k+y h \in \mathbb{Z}$
Thus, hence, ergo we know by $(*)$ that $z \mid(x a+y b)$.

Theorem: Let $n \in \mathbb{Z}$, with $n \geqslant 2$.
Then, n can be written as the product of one or more primes.

$$
\begin{aligned}
\text { Ex: } 12 & =2 \cdot 2 \cdot 3 \leftarrow \begin{array}{r}
\text { product of } \\
3 \text { primes }
\end{array} \\
11 & =11 \& \quad \begin{array}{r}
\text { product of } \\
\text { 1 prime }
\end{array}
\end{aligned}
$$

proof of theorem: We will use strong/ complete induction.
Let $S(n)$ be the statement " n can written as the product of one ur more primes"

When $n=2$, the statement $S(2)$ is true since 2 is the product of one prime.
Let $k \in \mathbb{Z}$ with $k>2$.
And assume $S(n)$ is true for all $2 \leq n<k$.

Ex: If $k=6$, you'd be assuming $2,3,4,5$ all factor into one or $2 \leq n<k$ more primes.

Goal: Show $S(k)$ is true.
Case 1: Suppose k is prime.
Then k is the product of one prime. So, $S(k)$ is true.

Case 2: Suppose k is not prime.
Then there must exist a positive divisor a of k where $2 \leq a<k[$ ie where $a \neq 1, a \neq k]$
So, $k=a b$ where b is also a positive integer.
Note: $b \neq 1$ since if $b=1$, that would imply $a=k$. And, $b \neq k$, since $b=k$ would imply $a=1$.
So, $2 \leqslant b<k$.
Since $2 \leqslant a<k$ and $2 \leqslant b<k$ by the inductive hypothesis $S(a)$ and $S(b)$ are both true.
Thus, $a=p_{1} p_{2} \cdots p_{r}$ and $b=q_{1} q_{2} \cdots q_{s}$ where p_{i}, q_{j} are primes and $r \geqslant 1, s \geqslant 1$.

Therefore,

$$
k=a b=p_{1} p_{2} \cdots p_{r} q_{1} q_{2} \cdots q_{s}
$$

can be written as the product of one or more primes.
So, $S(k)$ is true.
By the magical powers of induction $S(n)$ is true for all $n \geqslant 2$

Lemma: Let $x, y, z \in \mathbb{Z}$ with
If $x \mid y$ and $x \mid(y+z)$, then $x \mid z$. $x \neq 0$
proof:
Since x ly we know $y=x k$ where $k \in \mathbb{Z}$. Since $x(y+z)$ we know $y+z=x m$ where $m \in \mathbb{Z}$.

Thus,

$$
z=x m-y=x m-x k=x(m-k)
$$

Since $m, k \in \mathbb{Z}$ we know $m-k \in \mathbb{Z}$.
Thus, since $z=x(m-k)$ we know $x \mid z$.

Theorem (Euclid)
These are infinitely many primes.
proof by contradiction:
Suppose there were only a finite number of primes.
Call them $p_{1}, p_{2}, \ldots, p_{r}$
Let $N=p_{1} p_{2} \cdots p_{r}+1$
Ex: If there were only $r=3$ primes then $p_{1}=2, p_{2}=3, p_{3}=5$ and

$$
\begin{aligned}
& \text { then } P_{1}=2, P_{1} P_{2} P_{3}+1=2 \cdot 3 \cdot 5+1=31 \\
&
\end{aligned}
$$

Note: $2 \times 31,3 \times 31,5 \times 31$
By the earlier theorem from today N can be written as the product of one or mure primes.
So there must exist a prime that divides N. Suppose $p_{i} \mid N$ where $1 \leq i \leq r\left[\begin{array}{l}\text { One of the } \\ \text { primes from the } \\ \text { list of primes }\end{array}\right]$

So, $p_{i} \mid \underbrace{\left(p_{1} p_{2} \cdots p_{r}+1\right)}_{N}$
But also $p_{i}(\underbrace{p_{1} p_{2} \cdots p_{r}}_{p_{i} \text { is in here }}$.
By our lemma we must have $p_{i} \mid 1$.
So, $p_{i}= \pm 1$,
This is impossible since p_{i} is prime. Contradiction.
Thus, there exist an infinite \# of primes.

$$
\begin{aligned}
& \text { Answer to class question } \\
& \begin{aligned}
N=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13+1 & =30,031 \\
& =59.509
\end{aligned}
\end{aligned}
$$

Another method [for fun, not on any test]
One can show

$$
\sum_{\substack{2 \leq p \leq N \\ p \text { prime }}} \frac{1}{p}>\log (\log (N))-1
$$

Ex: $N=6, \frac{1}{2}+\frac{1}{3}+\frac{1}{5}>\log (\log (6))-1$
So if you let $N \rightarrow \infty$ then

$$
\begin{aligned}
& \text { So if you let } N \rightarrow \infty \text { then } \\
& \lim _{N \rightarrow \infty} \sum_{\substack{2 \leq p \leq N \\
p \text { prime }}} \frac{1}{p}>\lim _{N \rightarrow \infty}[\log (\log (N))-1]=\infty
\end{aligned}
$$

So, $\sum_{\substack{p \text { is } \\ \text { prime }}} \frac{1}{p}$ diverges.
So, there must be an infinite \# of primes otherwise the sum would converge.
Reference" "An introduction to the theory $\frac{\text { of numbers' by Niven, Zuckerman, }}{}$ ' bu montgomery

How are the primes spaced out?
$(2,(3), 4,(5), 6,7), 8,9,10,(11), 12,(13)$ $14,15,16,17,18,19,20,21,22$,
(23), $24,25,26,27,28,29,30,31$,
$32,33,34,35,36,37,38,39$,
$40,47,42,43,44,45,46,47$,
$48,49,50,51,52,53,54,55,56$,
$57,58,(59,60,61,62,63,64,65$,
$66,(67), 68,69,70,71,72,73,74$,
$75,76,77,78,79,80,81,82$,
$83,84,85,86,87,88,89,90$, $91,92,93,94,95,96,97$, $98,99,100,101, \ldots$

