Math 4460 $1 / 23 / 23$

Assumptions for the class
We will assume that the set of integers

$$
\mathbb{Z}=\{0,1,-1,2,-2,3,-3,4,-4, \ldots\}
$$

We will also assume the basic algebraic exists. properties of \mathbb{Z}.
For example, if $a, b, c \in \mathbb{Z}$ we will assume:

- $a+b \in \mathbb{Z}$ (closed under +)
- $a b \in \mathbb{Z}$ (closed under -)
- $a+(b+c)=(a+b)+c$
- $a(b c)=(a b) c$
- $a+b=b+a$
- $a b=b a$
- $0+a=a+0=a$
- $1 \cdot a=a \cdot 1=a$
- $a+(-a)=(-a)+a=0$
- $a[b+c]=a b+a c$
- $[b+c] a=b a+c a$

We will assume all the other usual basic algebra/arithmetic facts like

- If $a>b$ then $-a<-b$.

HW 1 TOPIC - Division and Primes
Def: Let a and b be integers with $a \neq 0$. We say that a divides b if there exists an integer k where $b=a k$.
If a divides b then we say that a is a divisor of b and we write $a \mid b$.

If a does not divide b we say that a is not a divisor of b read
"a divides b" and we write $a \times b$.
read "a does not divide $b^{\prime \prime}$
Ex:
Divisors of 12:

7×12 because there is no $k \in \mathbb{Z}$ with $12=7 k$ This would need $k=\frac{12}{7} \notin \mathbb{Z}$

Def: Let $p \in \mathbb{Z}$ with $p>1$.
We say that p is a prime if the only positive divisors of p are l and p. If p is not a prime, then we call it a composite number.

Ex: Let's circle the primes...
(2), (3),
(11) 12,
(13), $14,15,16$,
(17), 18,
(19),
$20,21,22,23,24,25,26,27, \ldots$

Proposition: Let x and y be positive integers. If $x \mid y$, then $1 \leq x \leq y$.
proof: Suppose x and y are positive integers and that $x \mid y$.
Since x is a positive integer we know $1 \leq x$.
Since $x l y$ we know $y=x k$ where $k \in \mathbb{Z}$.

We know k is positive because $k=\frac{y}{x}$ and x and y are both positive. of the rational
Thus, $\mid \leqslant k, \frac{\text { multiply by } x \text { on }}{\text { both sides }}$ numbers \mathbb{Q}
Since x is positive this gives $x \leq \underbrace{x k}_{y}$.
So, $1 \leqslant x \leqslant x k=y$.
Thus, $1 \leqslant x \leqslant y$.
Proposition: Let p and q be prime numbers.
If $p \mid q$, then $p=q$.
proof: Suppose p and q are primes and $p \mid q$.
Since q is prime it's only positive divisors are 1 and q.
Since p is positive and p / q, then this means $p=1$ or $p=q$.
Since p is prime, we know $p>l$.
So, $p=q$.

