Math 4460 1/23/23

Assumptions for the class
We will assume that the set of integers

$$\overline{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4\}$$
.
exists.
We will also assume the basic algebraic
properties of \overline{Z} .
For example, if $a_{,b}, c \in \overline{Z}$ we will assume:
 $a + b \in \overline{Z}$ (closed under +)
 $a + b \in \overline{Z}$ (closed under +)
 $a + (b+c) = (a+b)+c$
 $a + (b+c) = (a+b)$

HW 1 TOPIC - Division and Primes

Def: Let a and b be integers with a = 0. We say that a divides b if there exists an integer k where b=ak. If a divides b then we say that a is a divisor of b and we write a b. If a does not divide b we say read that a is not a divisor of b "a divides b" and we write atb. read R "a does not divide b" 上X° 12: 1, 2, 3, 4, 6, 12 Divisors of -1, -2, -3, -4, -6, -127/12 because there is no kEZ 6/12 -3/12 because with 12=7k because 12 = (6)(2)12 = (-3)(-4)This would need b = akb = akk= ½€ 74

Def: Let
$$p \in \mathbb{Z}$$
 with $p > 1$.
We say that p is a prime if the
only positive divisors of p are
1 and p. If p is not a prime,
then we call it a composite number.
Ex: Let's circle the primes...
 $Ex:$ Let's circle the primes...
 (a) (a) (a) (a) (a) (a) (a)
 (a) (a) (a) (a) (a) (a) (a) (a)
 (a) (a) (a) (a) (a) (a) (a) (a) (a)
 (a) (a)

<u>Proposition</u>: Let x and y be positive integers. If xly, then $|\leq X \leq Y$. <u>proof</u>: Suppose x and y are positive integers and that xly. Since x is a positive integer we know $|\leq X$. Since xly we know Y = XR where $R \in \mathbb{Z}$.

We know k is positive because

$$k = \frac{9}{2}$$
 and x and y are both positive. Properties
Thus, $1 \le k$. Multiply by x on
Thus, $1 \le k$. Thus positive this gives $x \le xk$.
So, $1 \le x \le xk = y$.
Thus, $1 \le x \le y$.
 $Proposition:$ Let p and q be prime numbers.
If $p|q$, then $p=q$.
 $Proof:$ Suppose p and q are primes and $p|q$.
Since q is prime it's only positive divisors
are 1 and q.
Since p is positive and plq, then this means
 $p=1$ or $p=q$.
Since p is prime, we know $p>1$.
So, $p=q$.