Math 4300 Homework 6 Solutions
(1) $A=(0,0), B=(-1,1), C=(1,1)$

Note that $\overleftrightarrow{A B}=L_{-1,0}, \overleftrightarrow{A C}=L_{1,0}, \overleftrightarrow{B C}=L_{0,1}$

(a)

(b)

$$
\begin{aligned}
& \triangle A B C \\
& =\overline{A B} \cup \overline{B C} \cup \overline{C A}
\end{aligned}
$$

(2) $A=(1,2), B=(1,4), C=(3,4)$

Note that $\overleftrightarrow{A B}=1$
From HW 5 we saw that $\overleftrightarrow{A C}=5 L_{2 \sqrt{5}}$
one can check that $\overleftrightarrow{B C}=L_{2} \longleftarrow \sqrt{17} \approx 4,12$

(a) \angle
(b) \triangle
(3) (a)

We have that

$$
\begin{aligned}
& \angle A B C=\overrightarrow{B A} \cup \overrightarrow{B C}=\overrightarrow{B C} \cup \overrightarrow{B A}=\angle C B A \\
& \frac{A}{\text { by def }} \\
& {\left[\begin{array}{c}
\text { Property } \\
\text { of sion } \\
\text { of sets }
\end{array}\right.} \\
& \text { by def }
\end{aligned}
$$

(3)(b) We have that

$$
\begin{aligned}
& \triangle A B C=\overline{A B} \cup \overline{B C} \cup \overline{C A} \\
& \triangle A C B=\overline{A C} \cup \overline{C B} \cup \overline{B A}=\overline{C A} \cup \overline{B C} \cup \overline{A B} \\
& =\overline{A B} \cup \overline{B C} \cup \overline{C A} \\
& \begin{array}{c}
\text { property of of sets } \\
\text { union on }
\end{array}
\end{aligned}
$$

Thus, $\triangle A B C=\overline{A B} \cup \overline{B C} \cup \overline{C A}=\triangle A C B$.
The other equalities all have a similar? proof. Try it out.
(4) Let B, Z be points with $B \neq Z$.

Let $l=\overleftrightarrow{B Z}$.
Let $f: l \rightarrow \mathbb{R}$ be a ruler with $f(B)=0$ and $f(Z)>0$.

Let $t=f(z)+1$.
Since f is onto, there exists a point $D \in l$ with $f(D)=t$.

Then,

$$
\underbrace{f(B)}_{0}<f(z)<\underbrace{f(D)}_{f(z)+1}
$$

Thus, $B-Z-D$.

