Math 4300 Homework 2 Solutions

(1) (a) $f: L_2 \rightarrow \mathbb{R}$ given by f(a, y) = yis the standard ruler f(-2, -3) = -3 f(-2, 0) = 0

$$f(-2,-3) = -2 \qquad f(-2,1) = 1$$

$$f(-2,-3/2) = -3/2 \qquad f(-2,\pi) = \pi$$

(1)(b) The standard ruler for
$$L_{m,b}=L_{-2,Y}$$

is f: $L_{-2,Y} \longrightarrow \mathbb{R}$
where $f(x,mx+b) = x \sqrt{1+m^2} = \sqrt{5} x$

$$f(-2,8) = -2\sqrt{5} \approx -4,472$$

$$f(-1,6) = -\sqrt{5} \approx -2,236$$

$$f(0,4) = 0\sqrt{5} = 0$$

$$f(1,2) = \sqrt{5} \approx 2,236$$

$$f(1,2) = 2\sqrt{5} \approx 4,472$$

$$f(2,0) = 2\sqrt{5} \approx 6,708$$

$$f(3,-2) = 3\sqrt{5} \approx 8.944$$

(2(b)) The standard ruler is

$$f: L_{Jo} \rightarrow |R$$
 where $f(x,y) = ln\left(\frac{x - 1 + Jo}{y}\right)$

$$f(-2.16, 0.12) = |n(\frac{-2.16 - 1 + \sqrt{10}}{0.12}) \approx |n(0.01898) \approx -3.964$$

$$f(-1, \sqrt{6}) = |n(\frac{-1 - 1 + \sqrt{10}}{\sqrt{6}}) \approx |n(0.72) \approx -0.745$$

$$f(0,3) = |n(\frac{0 - 1 + \sqrt{10}}{\sqrt{10}}) \approx |n(0.72) \approx -0.327$$

$$f(1,\sqrt{10}) = |n(\frac{1 - 1 + \sqrt{10}}{\sqrt{10}}) = |n(1) = 0$$

$$f(2,13) = |n(\frac{2 - 1 + \sqrt{10}}{\sqrt{6}}) \approx |n(1.387) \approx 0.327$$

$$f(3,\sqrt{6}) = |n(\frac{3 - 1 + \sqrt{10}}{\sqrt{6}}) \approx |n(2.10749) \approx 0.745$$

$$f(4.16, 0.12) = |n(\frac{4.16 - 1 + \sqrt{10}}{0.12}) \approx |n(52.686) \approx 3.964$$

$$\sqrt{10} \approx 3.1622$$

$$\sqrt{10} \approx 1.622$$

$$\sqrt{10} \approx 1.622$$

$$\sqrt{10} \approx 3.1622$$

$$\sqrt{10} \approx 1.622$$

$$\sqrt{10} \approx 1.622$$

$$\sqrt{10} \approx 1.622$$

$$\sqrt{10} \approx 1.622$$

$$\sqrt{10} \approx 3.1622$$

$$\sqrt{10} \approx 3.164$$

(a)
$$d((1,2),(3,4)) = \sqrt{(1-3)^2 + (2-4)^2}$$

= $\sqrt{4+4}$
= $\sqrt{8}$

(b)
$$d((-3,1),(5,10)) = \sqrt{(-3-5)^2 + (1-10)^2}$$

= $\sqrt{64+81}$
= $\sqrt{145}$

4) (a) P = (1, 2) and Q = (5, 6)We need to know what line P and Q live on. They have different x-coordinates so it's not a vertical line. It must be Some line Lr. Plug P and Q into $(x-c)^2 + y^2 = r^2$ to get $(1-c)^{2}+2^{2}=r^{2} \leftarrow plug in P$ $(5-c)^{2}+6^{2}=r^{2} \leftarrow plug in Q$

 $1 - 2c + c^2 + 4 = r^2$ This gives $25 - 10c + c^{2} + 36 = r$ $-2c + c^{2} + 5 = r^{2}$ $-10c + c^{2} + 6| = r^{2}$

(i) -(2) gives
$$\&c - 56 = 0$$
.
So, $c = \frac{56}{\&} = 7$.
And (i) then gives $r = \int 4 + (1 - 7)^2 = \sqrt{40}$
 $4 + (1 - 7)^2 = \sqrt{40}$
 $4 + (1 - 7)^2 = \sqrt{40}$
 $4 + (1 - 7)^2 = \sqrt{40}$
 $\approx 6,32$

So,
$$P = (1, 2)$$
, $Q = (5, 6)$ lie
On the hyperbolic line $+ 2\sqrt{10}$

Thus,

$$d_{H}(P,Q) = \left| \ln \left(\frac{1-7+2\sqrt{10}}{2} \right) \right| = \left| \ln \left(\frac{-6+2\sqrt{10}}{2} \right) \right|$$

$$P = \left(x_{1}, y_{1} \right) = \left(1, 2 \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(5, 6 \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(5, 6 \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(5, 6 \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(5, 6 \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(5, 6 \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(5, 6 \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(x_{2}, y_{2} \right) = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right) \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right)$$

$$Q = \left(1, \left(\frac{x_{1} - c + r}{y_{2}} \right)$$

$$Q = \left($$

$$\begin{array}{l} (4)(b) \quad P = (6, \pi^2), \ Q = (6, 2) \\ P \text{ and } Q \text{ lie on the vertical line } _{6}L \\ Thur, \\ d_{\mu}(P,Q) = \left| \ln\left(\frac{\pi^2}{2}\right) \right| \approx \left| 1.59631 \right| \\ = 1,59631 \\ d_{\mu}((a, y_1), (a, y_2)) \\ = \left| \ln\left(\frac{y_1}{y_2}\right) \right| \\ \text{when both points} \\ \text{lie on } _{A}L \\ \end{array}$$

(5) The standard ruler for
$$L_{3,-3}$$
 is
 $f: L_{3,-3} \rightarrow \mathbb{R}$ where $f(x, 3x-3) = x \sqrt{1+3^2} = \sqrt{10} x$
The problem is to find $P = (x_{1,1}, y_1)$ where
 $f(x_{1,2}, y_1) = -2$.
We need to solve $\sqrt{10} x_1 = -2$.
We need to solve $\sqrt{10} x_1 = -2$.
We need to solve $\sqrt{10} x_1 = -2$.
Thus, $x_1 = \frac{-2}{\sqrt{10}}$
To find y_1 we plug $(x_{1,2}y_1) = (\frac{-2}{\sqrt{10}}, y_1)$
To find y_1 we plug $(x_{1,2}y_1) = (\frac{-2}{\sqrt{10}}, y_1)$
To find $y_1 = 3(\frac{-2}{\sqrt{10}}) - 3 = \frac{-6}{\sqrt{10}} - 3$
This gives $y_1 = 3(\frac{-2}{\sqrt{10}}) - 3 = \frac{-6}{\sqrt{10}} - 3$
Thus, $P = (-\frac{2}{\sqrt{10}}, \frac{-6}{\sqrt{10}}, -3)$ has coordinate
 -2 using the standard ruler.
PICTURE ON NEXT PAGE

The new ruler is
$$g: L_z \rightarrow \mathbb{R}$$

given by $g(a,y) = f(a,y) - f(P)$
 $= f(a,y) - 3$
 $= y - 3$

Here $g(P) = g(z_3) = 3 - 3 = 0$ $g(Q) = g(z_3) = 5 - 3 = 2.70$.

The new ruler is
$$g: L_2 \rightarrow \mathbb{R}$$

given by $g(a,y) = -(f(a,y) - f(P))$
 $= -(f(a,y) - 3)$
 $= -y + 3$

Here
$$g(P) = g(z_1, z_2) = -3 + 3 = 0$$

 $g(Q) = g(z_1, z_2) = -(-5) + 3 = 8$

$$\begin{split} \widehat{(c)} & P = (2,3), Q = (4,0) \text{ do not} \\ \text{lie on a vertical line.} \\ \text{Let } & m = \frac{Q-3}{4-2} = -\frac{3}{2}. \\ \text{What is b?} \\ \text{Plog } P = (2,3) \text{ into } y = -\frac{3}{2} \times +b \text{ to get} \\ & 3 = (-\frac{3}{2})(2) +b. \text{ This gives } b = 6. \\ \text{Thus, } P \text{ and } Q \text{ lie on } L_{-\frac{3}{2},6}. \\ \text{The standard ruler is } f : L_{-3/2,6} \rightarrow \mathbb{R} \\ & \text{where } f(x,y) = X \sqrt{1+(-\frac{3}{2})^2} = X \sqrt{13/4} \\ & \text{Here we have} \\ f(P) = f(2,3) = \frac{\sqrt{13}}{2} \cdot 2 = \sqrt{13} \approx 3.6 \\ f(Q) = f(4,0) = \frac{\sqrt{13}}{2} \cdot 4 = 2\sqrt{13} \approx 7.2 \\ & \text{we have} \\ \end{array}$$

Picture of standard ruler

$$\begin{array}{c} (2,3) = P \\ (2,3) = P \\ (4,0) = Q \\ \\ \hline \\ (4,0) = Q \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$$

Then,
$$g(P) = g(2,3) = \sqrt{13} \cdot 2 - \sqrt{13} = 0$$

 $g(Q) = g(4,0) = \sqrt{13} \cdot 4 - \sqrt{13} = \sqrt{13} > 0$
So, g is the roler that we want.

Set
$$g: _{2}L \rightarrow |R$$
 where
 $g(a,y) = -(f(a,y) - f(P))$
 $= -(ln(y) - ln(3))$
 $= -ln(y) + ln(3)$
Then, $g(P) = g(2,3) = -ln(3) + ln(3) = 0$
and $g(Q) = g(2, \frac{1}{3}) = -ln(\frac{1}{3}) + ln(3)$
 $= ln(3) + ln(3)$
 $(-ln(2) = ln(2^{-1})) = 2 ln(3) \approx 2.197 > 0$
So, this g satisfies the conditions.
Picture of 9
 $f(Q) = g(2, \frac{1}{3}) = 2 ln(3) \approx 2.197$
 $= ln(3) \approx 2.197$
 $= ln(3) \approx 2.197$

(1) - (2) gives
$$-6c - 24 = 0$$
.
So, $c = -4$
Then, (1) gives $r = \sqrt{(2 - (-4))^2 + 3^2} = \sqrt{45}$
 ≈ 6.708

So,
$$P = (2,3)$$
 and $Q = (-1,6)$ lie
on $-4^{-1}\sqrt{45}$.

The stund and ruler is
$$f: \frac{1}{4} \int \frac{1}{45} \rightarrow \frac{1}{8}$$

Where $f(x,y) = \ln\left(\frac{x-c+r}{9}\right) = \ln\left(\frac{x+4+\sqrt{45}}{9}\right)$
Then,
 $f(P) = f(z,3) = \ln\left(\frac{z+4+\sqrt{45}}{3}\right) \approx \ln(4.236)$
 ≈ 1.4436
and
 ≈ 1.4436

$$f(Q) = f(-1,6) = \ln(\frac{1}{6}) \approx 0.481$$

We get
$$g: \frac{1}{-4} \int \overline{445} \quad g_{1}\sqrt{en} \quad b_{3}$$

 $g(x,y) = -\left(f(x,y) - f(P)\right)$
 $= -\left(\ln\left(\frac{x+4+\sqrt{4}x}{9}\right) - \ln\left(\frac{6+\sqrt{4}x}{3}\right)\right)$
 $= -\ln\left(\frac{\left(\frac{x+4+\sqrt{4}x}{9}\right)}{\left(\frac{6+\sqrt{4}x}{3}\right)}\right)$
 $\ln\left(\frac{A}{8}\right)$
 $= \ln\left(\frac{\left(\frac{6+\sqrt{4}x}{9}\right)}{\left(\frac{6+\sqrt{4}x}{9}\right)}\right)$
 $-\ln(c) = \ln(c^{-1})$
Then,
 $g(P) = g(2,3) = \ln\left(\frac{\left(\frac{6+\sqrt{4}x}{3}\right)}{\left(\frac{2+\sqrt{4}\sqrt{4}\sqrt{4}x}{3}\right)}\right) = \ln(1) = 0$
and
 $g(Q) = g(-1,6) = \ln\left(\frac{\left(\frac{6+\sqrt{4}x}{9}\right)}{\left(\frac{-1+\sqrt{4}\sqrt{4}\sqrt{4}x}{6}\right)}\right) \approx \ln\left(\frac{4,23667}{1.618}\right)$
 $\approx 0.962 > 0$

8 Let (P, Z, d) be a metric geometry. Let P be a point and I be a line Where P is on l. Let N>0. We must find a point Q un l with $d(P,Q) = \Gamma$. Since we are in a metric geometry there exists a ruler f: l -> R. Then f(P) is some real number. Since fis a bijection, there exists a point QEL where f(Q) = f(P) + rThen, because f is a culer we know

$$d(P,Q) = |f(P) - f(Q)|$$

= |f(P) - (f(P) + r)|
= |-r|
= r
Note: You could have also picked QEL
Where $f(Q) = f(P) - r$ and that would
have also worked.

9 Let 2 be a line in a metric geometry (P, Z, d). Then there exists a ruler f: l > R. Since f is a bijection and IR is an infinite set, then I must also be an infinite set.

[o](a) Let $t \in \mathbb{R}$. Then, $(\cosh(t))^2 - (\sinh(t))^2$ $=\left(\frac{e^{t}+e^{-t}}{2}\right)^{2}-\left(\frac{e^{t}-e^{-t}}{2}\right)^{2}$ $= \frac{(e^{2t} + 2e^{t} e^{-t} + e^{-2t}) - (e^{2t} - 2e^{t} e^{-t} + e^{-2t})}{(e^{2t} - 2e^{t} e^{-t} + e^{-2t})}$ $= \frac{4e^{t}e^{-t}}{4e^{t}e^{-t}} = e^{e} = \lfloor e^{e} \rfloor$ (10)(6) Let tell. Then et >0 and et >0. Thus, $\cosh[t] = \frac{e^{t} + e^{-t}}{2} > \frac{0 + 0}{2} = 0.$

$$(b)(c) \quad \text{Let } t \in \mathbb{R}. \quad \text{Then,}$$

$$(+ unh(t))^{2} + (sech(t))^{2}$$

$$= \frac{(sinh(t))^{2}}{(cosh(t))^{2}} + \frac{1}{(cosh(t))^{2}}$$

$$= \frac{(sinh(t))^{2} + 1}{(cosh(t))^{2}} \xrightarrow{(cosh(t))^{2}}{(cosh(t))^{2}}$$

$$= 1$$

$$(b)(d) \quad \text{Let } t \in \mathbb{R}. \quad \text{From } lo(c),$$

$$We \quad \text{Know } cosh(t) > 0. \quad \text{Thus,}$$

 $sech(t) = \frac{1}{cosh(t)} > 0.$

$$\begin{aligned} \boxed{\bigcirc(e)} \quad \bigcirc \text{One can show that tanh(t)} \\ \text{is always increasing by shawing} \\ \text{that } (\texttt{tanh(t)})' > 0 \quad \text{for all } t. \\ \text{We have that} \\ \left(\texttt{tanh(t)})' = \left(\frac{\sinh(t)}{\cosh(t)}\right)' = \left[\frac{e^{t} - e^{-t}}{2}, \frac{z}{e^{t} + e^{t}}\right)' \\ = \left(\frac{e^{t} - e^{-t}}{e^{t} + e^{t}}\right)' \\ = \frac{(e^{t} + e^{-t})(e^{t} + e^{t}) - (e^{t} - e^{t})(e^{t} - e^{t})}{(e^{t} + e^{-t})^{2}} \\ \xrightarrow{\texttt{Potient rule}} \\ = \frac{e^{2t} + e^{t} e^{t} + e^{t} + e^{2t}}{(e^{t} + e^{-t})^{2}} \\ \xrightarrow{\texttt{Potient rule}} \\ = \frac{4}{(e^{t} + e^{-t})^{2}} \end{aligned}$$

Since
$$e^{\pm} + e^{\pm} > 0$$
 we get the
denominator is never zero or negative.
Since $(e^{\pm} + e^{\pm})^2 > 0$ we get that
 $(tanh(t))' = \frac{4}{(e^{\pm} + e^{\pm})^2} > 0$ for all $t \in \mathbb{R}$.
Thus, $tanh(t)$ is an increasing function.