Math 4300
Homework 2 Solutions
(1) (a) $f: L_{2} \rightarrow \mathbb{R}$ given by $f(a, y)=y$ is the standend wor

$$
\begin{aligned}
& f(-2,-3)=-3 \\
& f(-2,-2)=-2 \\
& f(-2,-3 / 2)=-3 / 2
\end{aligned}
$$

$$
f(-2,0)=0
$$

$$
f(-2,1)=1
$$

$$
f(-2, \pi)=\pi
$$

(1) (b) The standard ruler for $L_{m, b}=L_{-2,4}$ is $f: L_{-2,4} \longrightarrow \mathbb{R}$
where $f(x, m x+b)=x \sqrt{1+m^{2}}=\sqrt{5} x$

$$
\begin{aligned}
& f(-2,8)=-2 \sqrt{5} \approx-4.472 \\
& f(-1,6)=-\sqrt{5} \approx-2.236 \\
& f(0,4)=0 \sqrt{5}=0 \\
& f(1,2)=\sqrt{5} \approx 2.236 \\
& f(2,0)=2 \sqrt{5} \approx 4.472 \\
& f(3,-2)=3 \sqrt{5} \approx 6.708 \\
& f(4,-4)=4 \sqrt{5} \approx 8.944
\end{aligned}
$$

(2) (a) The standand ruler on 2_{2}^{L} is $f:{ }_{2} L \rightarrow \mathbb{R}$ where $f(a, y)=\ln (y)$

$$
\begin{aligned}
& f(2,0.001)=\ln (0.001) \approx-9.21 \\
& f(2,0,4)=\ln (0.4) \approx-0.916 \\
& f(2,1)=\ln (1)=0 \\
& f(2, e)=\ln (e)=1 \\
& f(2,5)=\ln (5) \approx 1.609 \\
& f(2,10)=\ln (10) \approx 2.3 \\
& \\
& f(2,10) \\
& f
\end{aligned}
$$

(2)(b) The standard ruler is
$f: L_{\sqrt{10}} \rightarrow \mathbb{R}$ where $f(x, y)=\ln \left(\frac{x-1+\sqrt{10}}{y}\right)$

$$
\begin{aligned}
& f(-2.16,0.12)=\ln \left(\frac{-2.16-1+\sqrt{10}}{0.12}\right) \approx \ln (0.01898) \approx-3.964 \\
& f(-1, \sqrt{6})=\ln \left(\frac{-1-1+\sqrt{10}}{\sqrt{6}}\right) \approx \ln (0.4745) \approx-0.745 \\
& f(0,3)=\ln \left(\frac{0-1+\sqrt{10}}{3}\right) \approx \ln (0.72) \approx-0.327 \\
& f(1, \sqrt{10})=\ln \left(\frac{1-1+\sqrt{10}}{\sqrt{10}}\right)=\ln (1)=0 \\
& f(2,3)=\ln \left(\frac{2-1+\sqrt{10}}{3}\right) \approx \ln (1.387) \approx 0.327 \\
& f(3, \sqrt{6})=\ln \left(\frac{3-1+\sqrt{10}}{\sqrt{6}}\right) \approx \ln (2.10749) \approx 0.745 \\
& f(4.16,0.12)=\ln \left(\frac{4.16-1+\sqrt{10}}{0.12}\right) \approx \ln (52.686) \approx 3.964 \\
&
\end{aligned}
$$

(3)
(a)

$$
\begin{aligned}
d((1,2),(3,4)) & =\sqrt{(1-3)^{2}+(2-4)^{2}} \\
& =\sqrt{4+4} \\
& =\sqrt{8}
\end{aligned}
$$

(b)

$$
\begin{aligned}
d((-3,1),(5,10)) & =\sqrt{(-3-5)^{2}+(1-10)^{2}} \\
& =\sqrt{64+81} \\
& =\sqrt{145}
\end{aligned}
$$

(4) (a)
$P=(1,2)$ and $Q=(5,6)$
We need to know what line P and Q live on. They have different x-coordinates so it's not a vertical line. It must be some line L_{r}.
Let's find it.
Plug P and Q into $(x-c)^{2}+y^{2}=r^{2}$ to get

$$
\begin{aligned}
& \text { un } P \text { and } Q \text { into }(x-c)+p \text { log in } P \\
& (1-c)^{2}+2^{2}=r^{2} \\
& (5-c)^{2}+6^{2}=r^{2}
\end{aligned}
$$

This gives

$$
\begin{array}{r}
-2 c+c^{2}+5=r^{2} \\
-10 c+c^{2}+61=r^{2} \tag{2}
\end{array}
$$

(1) -(2) gives $8 c-56=0$.

So, $c=\frac{56}{8}=7$.
And (1) then gives $r=\sqrt{\frac{4+(1-7)^{2}}{4+(1-c)^{2}}}=\sqrt{40}$

$$
\approx 6,32
$$

So, $P=(1,2), Q=(5,6)$ lie
On the hyperbolic line ${ }_{7} L_{2 \sqrt{10}}$

$$
\begin{aligned}
& \text { Thus, } \\
& \left.d_{H}(P, Q)=\left|\ln \left(\frac{\frac{1-7+2 \sqrt{10}}{2}}{\frac{5-7+2 \sqrt{10}}{6}}\right)\right|=\ln \left(\frac{\frac{-6+2 \sqrt{10}}{2}}{\frac{-2+2 \sqrt{10}}{6}}\right) \right\rvert\, \\
& P=\left(x_{1}, y_{1}\right)=(1,2) \\
& \approx\left|\ln \left(\frac{0.16227766}{0.72075922}\right)\right| \\
& Q=\left(x_{2}, y_{2}\right)=(5,6) \\
& \approx|-1.49| \\
& d_{H}(P, Q)=\left|\ln \left(\frac{\frac{x_{1}-c+r}{y_{1}}}{\frac{x_{2}-c+r}{y_{2}}}\right)\right| \\
& \text { Thus, } d_{H}(P, Q) \approx 1.49 \\
& =1.49 \text { PICNRE }
\end{aligned}
$$

(4)(b) $P=\left(6, \pi^{2}\right), Q=(6,2)$
P and Q lie on the vertical line ${ }_{6} L$
Thus,

$$
\begin{aligned}
& \text { Thur, } \\
& \begin{aligned}
d_{H}(P, Q)=\left|\ln \left(\frac{\pi^{2}}{2}\right)\right| & \approx|1.59631| \\
& =1.59631
\end{aligned}
\end{aligned}
$$

$$
=1,59631
$$

$$
\begin{gathered}
d_{H}\left(\left(a, y_{1}\right),\left(a, y_{2}\right)\right) \\
=\left|\ln \left(\frac{y_{1}}{y_{2}}\right)\right|
\end{gathered}
$$

when both points
lie on a^{L}
PICTURE

(5) The standard ruler for $L_{3,-3}$ is $f: L_{3,-3} \rightarrow \mathbb{R}$ where $f(x, 3 x-3)=x \sqrt{1+3^{2}}$ $=\sqrt{10} x$

The problem is to find $P=\left(x_{1}, y_{1}\right)$ where $f\left(x_{1}, y_{1}\right)=-2$.
We need to solve $\sqrt{10} x_{1}=-2$.
Thus, $x_{1}=\frac{-2}{\sqrt{10}}$
To find y_{1} we plug $\left(x_{1}, y_{1}\right)=\left(\frac{-2}{\sqrt{10}}, y_{1}\right)$ into the line $L_{3,-3} \& y=3 x-3$
This gives $y_{1}=\underbrace{3\left(\frac{-2}{\sqrt{10}}\right)-3}_{3 x_{1}-3}=\frac{-6}{\sqrt{10}}-3$
Answer
Thus, $P=\left(-\frac{2}{\sqrt{10}}, \frac{-6}{\sqrt{10}}-3\right)$ has coordinate -2 using the standard ruler. PICTURE ON NEXT PAGE

Let's see a picture to understand this answer more.

$$
\begin{aligned}
& \text { this answer more. } \\
& P=\left(\frac{-2}{\sqrt{10}}, \frac{-6}{\sqrt{10}}-3\right) \approx(-0.632,-4.897)
\end{aligned}
$$

(6) (a) Let $P=(2,3), Q=(2,5)$.

Then $\overleftrightarrow{P Q}=L_{2}$
The standard ruler on $\overleftrightarrow{P Q}=L_{2}$ is given by $f: L_{2} \rightarrow \mathbb{R}$ where $f(a, y)=y$

Standard ruler picture

Since $f(Q)=5>3=f(P)$ we need to shift this ruler by $f(P)=3$.

The new ruler is $g: L_{2} \rightarrow \mathbb{R}$
given by $g(a, y)=f(a, y)-f(p)$

$$
\begin{aligned}
& =f(a, y)-3 \\
& =y-3
\end{aligned}
$$

Here $g(P)=g(2,3)=3-3=0$

$$
\begin{aligned}
& g(P)=g(2,3)=3-3=0 \\
& g(Q)=g(2,5)=5-3=2>0
\end{aligned}
$$

Picture of g

(6)(b) Let $P=(2,3), Q=(2,-5)$.

Then $\overleftrightarrow{P Q}=L_{2}$
The standard ruler on $\overleftrightarrow{P Q}=L_{2}$ is given by

$$
f: L_{2} \rightarrow \mathbb{R} \text { where } f(a, y)=y
$$

$$
\begin{aligned}
& f(2,3)=3 \\
& f(2,-5)=-5
\end{aligned}
$$

Standard ruler picture

Since $f(Q)=-5<3=f(P)$ we need to shift this ruler by $f(p)=3$. and then multiply by -1 .

The new ruler is $g: L_{2} \rightarrow \mathbb{R}$ given by $g(a, y)=-(f(a, y)-f(p))$

$$
\begin{aligned}
& =-(f(a, y)-3) \\
& =-y+3
\end{aligned}
$$

Here $g(P)=g(2,3)=-3+3=0$

$$
\begin{aligned}
& g(P)=g(2,3)=-5+ \\
& g(Q)=g(2,5)=-(-5)+3=8
\end{aligned}
$$

picture of 9

(6)(c) $P=(2,3), Q=(4,0)$ do not lie on a vertical line.
Let $m=\frac{0-3}{4-2}=\frac{-3}{2}$.
What is b ?
P lug $P=(2,3)$ into $y=\frac{-3}{2} x+b$ to get $3=\left(-\frac{3}{2}\right)(2)+b$. This gives $b=6$.
Thus, P and Q lie on $L_{-\frac{3}{2}, 6}$.
The standard ruler is $f: L_{-3 / 2,6} \rightarrow \mathbb{R}$
where $f(x, y)=x \sqrt{1+\left(-\frac{3}{2}\right)^{2}}=x \sqrt{13 / 4}$

$$
=\frac{\sqrt{13}}{2} x
$$

Here we have

$$
\begin{aligned}
& \text { Here we have } \\
& f(P)=f(2,3)=\frac{\sqrt{13}}{2} \cdot 2=\sqrt{13} \approx 3.6 \\
& f(Q)=f(4,0)=\frac{\sqrt{13}}{2} \cdot 4=2 \sqrt{13} \approx 7.2
\end{aligned}
$$

picture of standard ruler

Since $f(Q)=2 \sqrt{13}>\sqrt{13}=f(\rho)$ we need to shift f by $f(p)=\sqrt{13}$

Set $g: L_{-\frac{3}{2}, 6} \rightarrow \mathbb{R}$ where

$$
\begin{aligned}
g(x, y) & =f(x, y)-f(p) \\
& =\frac{\sqrt{13}}{2} x-\sqrt{13}
\end{aligned}
$$

Then, $g(p)=g(2,3)=\frac{\sqrt{13}}{2} \cdot 2-\sqrt{13}=0$

$$
g(Q)=g(4,0)=\frac{\sqrt{13}}{2} \cdot 4-\sqrt{13}=\sqrt{13}>0
$$

So, g is the ruler that we want.
picture of 9

(7)(a) $P=(2,3), Q=\left(2, \frac{1}{3}\right)$ lie on the line 2 . The standard ruler is $f: L \rightarrow \mathbb{R}$ where $f(a, y)=\ln (y)$

$$
\begin{aligned}
& \text { We have } \\
& f(P)=f(2,3)=\ln (3) \approx 1.0986 \\
& f(Q)=f\left(2, \frac{1}{3}\right)=\ln \left(\frac{1}{3}\right) \approx-1.0986
\end{aligned}
$$

picture of f

Since $f(Q)<f(P)$ we need to shift f by $f(P)$ and multiply by -1 .

Set $g:{ }_{2} L \rightarrow \mathbb{R}$ where

$$
\begin{aligned}
g(a, y) & =-(f(a, y)-f(p)) \\
& =-(\ln (y)-\ln (3)) \\
& =-\ln (y)+\ln (3)
\end{aligned}
$$

Then, $g(p)=g(2,3)=-\ln (3)+\ln (3)=0$
and $g(Q)=g\left(2, \frac{1}{3}\right)=-\ln \left(\frac{1}{3}\right)+\ln (3)$

$$
\begin{aligned}
(Q)=g(2, & =\ln (3)+\ln (3) \\
& =2 \ln (3) \approx 2.197>0
\end{aligned}
$$

So, this g satisfies the conditions.
picture of g

$(7)(b) \quad P=(2,3), Q=(-1,6)$
They do not lie on a vertical line and so $\overleftrightarrow{P Q}={ }_{c} L_{r}$ for some c, r.
P log P and Q into $(x-c)^{2}+y^{2}=r^{2}$ to get

$$
\begin{array}{r}
(2-c)^{2}+3^{2}=r^{2} \\
(-1-c)^{2}+6^{2}=r^{2} \\
3 \\
-4 c+c^{2}+13=r^{2} \tag{2}\\
2 c+c^{2}+37=r^{2}
\end{array}
$$

(1) - (2) gives $-6 c-24=0$.

So, $c=-4$
Then, (1) gives $\begin{aligned} r=\sqrt{(2-(-4))^{2}+3^{2}} & =\sqrt{45} \\ & \approx 6.708\end{aligned}$
≈ 6.708

So, $P=(2,3)$ and $Q=(-1,6)$ lie on ${ }_{-4} L_{\sqrt{45}}$.

The stand and ruler is $f:-4 L_{\sqrt{45}} \rightarrow \mathbb{R}$
where $f(x, y)=\ln \left(\frac{x-c+r}{y}\right)=\ln \left(\frac{x+4+\sqrt{45}}{y}\right)$

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
f(P)=f(2,3)=\ln \left(\frac{2+4+\sqrt{45}}{3}\right) & \approx \ln (4.236) \\
& \approx 1.4436
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } \\
& \begin{aligned}
f(Q)=f(-1,6)=\ln \left(\frac{-1+4+\sqrt{45}}{6}\right) & \approx \ln (1.618) \\
& \approx 0.481
\end{aligned}
\end{aligned}
$$ and

Since $f(Q)<f(\rho)$ we shift by $f(P)$ and multiply by -1 .

We get $9:{\underset{-4}{4} \sqrt{45} \text { given by }}_{1}$

$$
\begin{aligned}
& g(x, y)=-(f(x, y)-f(\rho)) \\
& =-\left(\ln \left(\frac{x+4+\sqrt{45}}{y}\right)-\ln \left(\frac{6+\sqrt{45}}{3}\right)\right) \\
& =-\ln \left(\frac{\left(\frac{x+4+\sqrt{45}}{y}\right)}{\left(\frac{6+\sqrt{45}}{3}\right)}\right) \\
& \begin{array}{l}
\ln \left(\frac{A}{B}\right) \\
=\ln (A)-\ln (B) \\
\left.=\ln \left(\frac{\left(\frac{6+\sqrt{45}}{3}\right)}{\left(\frac{x+4+\sqrt{45}}{y}\right)}\right)=1 . C^{-1}\right)
\end{array} \\
& -\ln (c)=\ln \left(c^{-1}\right) \\
& \text { Then, } \\
& \text { and } \\
& g(Q)=g(-1,6)=\ln \left(\frac{\left(\frac{6+\sqrt{45}}{3}\right)}{\left(\frac{-1+4+\sqrt{45}}{6}\right)}\right) \approx \ln \left(\frac{4.23607}{1.618}\right) \\
& \approx 0.962>0
\end{aligned}
$$

So, $g(P)=0$ and $g(Q)>0$.
Thus g is the ruler we are looking for.
picture of 9

(8) Let (γ, \mathcal{L}, d) be a metric geometry. Let P be a point and l be a line Where P is on l.

Let $r>0$.
We must find a point Q un l with $\quad d(P, Q)=r$.
Since we are in a metric geometry there exists a ruler $f: l \rightarrow \mathbb{R}$.

Then $f(\rho)$ is some real number.
Since f is a bijection, there exists a point $Q \in l$ where

$$
f(Q)=f(P)+r
$$

Then, because f is a ruler we know \nrightarrow

$$
\begin{aligned}
& d(P, Q)=|f(\rho)-f(Q)| \\
&=|f(\rho)-(f(\rho)+r)| \\
&=|-r| \\
&=r \\
& \begin{array}{c}
\text { since } \\
r>0
\end{array}
\end{aligned}
$$

Note: You could have also picked $Q \in l]$ Where $f(Q)=f(\rho)-r$ and that would have also worked.
(9) Let l be a line in a metric geometry $(\mathscr{P}, \mathcal{L}, d)$. Then there exists a ruler $f: l \rightarrow \mathbb{R}$. Since f is a bijection and \mathbb{R} is an infinite set, then l must also be an infinite set.
(10)(a) Let $t \in \mathbb{R}$.

Then,

$$
\begin{aligned}
& (\cosh (t))^{2}-(\sinh (t))^{2} \\
= & \left(\frac{e^{t}+e^{-t}}{2}\right)^{2}-\left(\frac{e^{t}-e^{-t}}{2}\right)^{2} \\
= & \frac{\left(e^{2 t}+2 e^{t} e^{-t}+e^{-2 t}\right)-\left(e^{2 t}-2 e^{t} e^{-t}+e^{-2 t}\right)}{4} \\
= & \frac{4 e^{t} e^{-t}}{4}=e^{0}=1
\end{aligned}
$$

(10)(b) Let $t \in \mathbb{R}$. Then $e^{t}>0$ and $e^{-t}>0$.

Thus,

$$
\text { Thus, } \cosh (t)=\frac{e^{t}+e^{-t}}{2}>\frac{0+0}{2}=0 \text {. }
$$

(10)(c) Let $t \in \mathbb{R}$. Then,

$$
\begin{aligned}
& (\tanh (t))^{2}+(\operatorname{sech}(t))^{2} \\
& =\frac{(\sinh (t))^{2}}{(\cosh (t))^{2}}+\frac{1}{(\cosh (t))^{2}} \\
& =\frac{(\sinh (t))^{2}+1}{(\cosh (t))^{2}} \stackrel{(10)}{=} \frac{(\cosh (t))^{2}}{(\cosh (t))^{2}} \\
& =1
\end{aligned}
$$

(10)(d) Let $t \in \mathbb{R}$. From $l_{0}(c)$, we know $\cosh (t)>0$. Thus, $\operatorname{sech}(t)=\frac{1}{\cosh (x)}>0$.
(10)(e) One can show that $\tanh (t)$ is always increasing by showing that $(\tanh (t))^{\prime}>0$ for all t.
we have that

$$
\begin{aligned}
& \text { We have that } \\
& \begin{array}{l}
(\tanh (t))^{\prime}=\left(\frac{\sinh (t)}{\cosh (t)}\right)^{\prime}=\left[\frac{e^{t}-e^{-t}}{2} \cdot \frac{2}{e^{t}+e^{-t}}\right]^{\prime} \\
=\left(\frac{e^{t}-e^{-t}}{e^{t}+e^{-t}}\right)^{\prime} \\
=\frac{\left(e^{t}+e^{-t}\right)\left(e^{t}+e^{-t}\right)-\left(e^{t}-e^{-t}\right)\left(e^{t}-e^{-t}\right)}{\left(e^{t}+e^{-t}\right)^{2}} \\
\text { quotient rule }
\end{array}
\end{aligned}
$$

$$
=\frac{e^{2 t}+\overbrace{e^{t} e^{-t}}^{1}+\overbrace{e^{-t} e^{t}}^{1}+e^{-2 t}-e^{2 t}+\overbrace{e^{t} e^{-t}+}^{1} \overbrace{-e^{-t} e^{t}-e^{-2 t}}^{1}}{4}\left(e^{t}+e^{-t}\right)^{2}
$$

$$
=\frac{4}{\left(e^{t}+e^{-t}\right)^{2}}
$$

Since $e^{t}+e^{-t}>0$ we get the denominator is never zero or negative.
Since $\left(e^{t}+e^{-t}\right)^{2}>0$ we get that $(\tanh (t))^{\prime}=\frac{4}{\left(e^{t}+e^{-t}\right)^{2}}>0$ for all $t \in \mathbb{R}$.

Thus, $\tanh (t)$ is an increasing function.

