Math 4300 9/6/23

Topic 2- Metric Geometries

Def: Let S be a set. A distance function d: SXS -> R is a function that satisfies the following for all P,QES: $(i) d(P,Q) \ge 0$ (ii) d(P,Q) = 0 iff $P = \hat{Q}$ (iii) d(P,Q) = d(Q,P)

Ex: Define the Evulidean distance $d_E: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$

$$d_{E} \left(\begin{pmatrix} x_{1}, y_{1} \end{pmatrix}, \begin{pmatrix} x_{2}, y_{2} \end{pmatrix} \right) =$$

$$P \qquad Q$$

$$= \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}$$

(i) $d(P,Q) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \ge 0$ $\ge 0 \ge 0$ d(P,Q) = 0(ii) $\sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}=0$ iff $(x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$ iff 7,0 7 $(x_1 - x_2)^2 = 0$ and $(y_1 - y_2)^2 = 0$ iff

iff $x_1 - x_2 = 0$ and $y_1 - y_2 = 0$ iff $x_1 = x_2$ and $y_1 = y_2$ iff $P = (x_1, y_1) = (x_2, y_2) = Q$

(iii) $d(P,Q) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

 $= \int (x_2 - x_1)^2 + (y_2 - y_1)^2$ = d(Q, P).Def: Let (2,2) be an incidence geometry. Let d be a distance function on P. Let 1 be a line from Z. A Function f: l -> IR is called a ruler for l (or a coordinate system for 2) if the following are true:

(i)
$$f$$
 is a bijection (onto $f |-1$)
between l and $|R$ sorjective f
(ii) $|f(P) - f(Q)| = d(P,Q)$
for all $P, Q \in P$.
 R
 $dPQ = f(Q) = f(Q) = f(Q)$
 $f(P) - f(Q) = f(Q)$
 $f(Q) = f(Q) = f(Q)$
 $f(P) = f(Q) = f(Q)$

EX: Consider the Euclidean plane $C = (R^2, Z_E)$ with P Z distance function de from above. Let's look at L1. Define $f: L \rightarrow \mathbb{R}$ by f(I, y) = y

Let's check that f is a ruler.
f is a bijection. We will prove
soon in general.
If
$$P = (1, y_1)$$
 and $Q = (1, y_2)$
one on L_1 .

Then,

$$d_{E}(P,Q) = \sqrt{(1-1)^{2} + (y_{1}-y_{2})^{2}}$$

$$= \sqrt{(y_{1}-y_{2})^{2}}$$

$$= |y_{1}-y_{2}|$$

$$= |f(1,y_{1}) - f(1,y_{2})|$$

$$= |f(P) - f(Q)|$$

Now consider the line $L_{z,1} = \{(x,y) \in |\mathbb{R}^2 | y = 2x + 1\}$ Define $f: L_{2,1} \rightarrow \mathbb{R}$ by $f(x,y) = \sqrt{5} \cdot X$ (1,3) (声) (1)— (0|1)

One can show this is
a ruler. We will prove
soon. For example,
$$d((-1,-1), (0,1)) = \sqrt{(-1-0)^2 + (-1-1)^2}$$
$$= \sqrt{5}$$
$$= \left| -\sqrt{5} - 0 \right|$$
$$= \left| f(-1,-1) - f(0,1) \right|$$

Lemma: Let (P, X) be an incidence geometry. Let d be a distance function UN ? Let l be a line in L. Suppose F: l-> R and f is onto and |f(P) - f(Q)| = d(P,Q)for all P,QEP. Then, fis 1-1 and hence is a ruler on l.

proof: Let's show the above
conditions imply that f is 1-1.
Let P,QE P and
$$f(P) = f(Q)$$
.
We must show that $P = Q$.
We have that
 $d(P,Q) = |f(P) - f(Q)| = O$
(assumption)
Since $d(P,Q) = O$ and d
is a distance function
we know $P = Q$.
Thus, f is 1-1.
So, f is a ruler for Q .