Math 4300 9/6/23

Topic 2-Metric Geometries
Def: Let S be a set.
A distance function $d: S \times S \rightarrow \mathbb{R}$
is a function that satisfies the following for all $P, Q \in S$:
(i) $d(P, Q) \geqslant 0$
(ii) $d(P, Q)=0$ iff $P=Q$
(iii) $d(P, Q)=d(Q, P)$

Ex: Define the Euclidean distance $d_{E}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ as

$$
\begin{aligned}
d_{E} & (\underbrace{\left(x_{1}, y_{1}\right)}_{P}, \underbrace{\left(x_{2}, y_{2}\right)}_{Q})= \\
& =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
\end{aligned}
$$

EX:

$$
\begin{aligned}
& d_{E}((1,2),(-1,-2)) \\
& =\sqrt{(1-(-1))^{2}+(2-(-2))^{2}} \\
& =\sqrt{20} \approx 4.4721
\end{aligned}
$$

Theorem: d_{E} is a distance function.
proof: Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ be in \mathbb{R}^{2}.
(i) $d(P, Q)=\underset{\geqslant 0}{\sqrt{\left(x_{1}-x_{2}\right)^{2}}+\underbrace{\left(y_{1}-y_{2}\right)^{2}}_{\geqslant 0}} \geqslant 0$
(ii) $d(P, Q)=0$
iff $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}=0$
iff $\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}=0$
iff $\left(x_{1}-x_{2}\right)^{2}=0$ and $\left(y_{1}-y_{2}\right)^{2}=0$
iff $x_{1}-x_{2}=0$ and $y_{1}-y_{2}=0$
iff $x_{1}=x_{2}$ and $y_{1}=y_{2}$
iff $P=\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)=Q$
(iii) $d(P, Q)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =d(Q, P)
\end{aligned}
$$

Def: Let (g, \mathcal{L}) be an incidence geometry. Let d be a distance function on ∂. Let l be a line from \mathcal{L}. A function
$f: l \rightarrow \mathbb{R}$ is called
a ruler for ℓ (or a
coordinate system for l) if the following are true:
(i) f is a bijection (onto \& $1-1$)
between l and \mathbb{R} sorjective \uparrow absolute value in \mathbb{R}
(ii) $|f(P)-f(Q)|=d(P, Q)$
for all $P, Q \in \rho$.

Ex: Consider the Euclidean
 distance function d_{E} from above. Let's look at L_{1}.
Define $f: L_{1} \rightarrow \mathbb{R}$ by $f(1, y)=y$

Let's check that f is a ruler. f is a bijection. We will prove soon in general.
If $P=\left(1, y_{1}\right)$ and $Q=\left(1, y_{2}\right)$ are on L_{1}.

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
& d_{E}(P, Q \mid=\sqrt{\underbrace{(1-1)^{2}+\left(y_{1}-y_{2}\right)^{2}}_{0}} \\
&=\sqrt{\left(y_{1}-y_{2}\right)^{2}} \\
&|z|=\sqrt{z^{2}} \\
& z \in \mathbb{R}=\left|y_{1}-y_{2}\right| \\
&=\left|f\left(1, y_{1}\right)-f\left(1, y_{2}\right)\right| \\
&=|f(p)-f(Q)|
\end{aligned}
\end{aligned}
$$

Now consider the line

$$
L_{2,1}=\left\{(x, y) \in \mathbb{R}^{2} \mid y=2 x+1\right\}
$$

Define $f: L_{2,1} \rightarrow \mathbb{R}$
by $f(x, y)=\sqrt{5} \cdot x$

One can show this is a rules. We will prove Soon. For example,

$$
\begin{aligned}
d_{E}((-1,-1),(0,1)) & =\sqrt{(-1-0)^{2}+(-1-1)^{2}} \\
& =\sqrt{5} \\
& =|-\sqrt{5}-0| \\
& =|f(-1,-1)-f(0,1)|
\end{aligned}
$$

Lemma: Let $(\mathcal{2}, \mathscr{L})$ be a_{n} incidence geometry.
Let d be a distance function on 2 ?
Let l be a line in \mathcal{L}.
Suppose $f: l \rightarrow \mathbb{R}$ and
f is onto and

$$
|f(P)-f(Q)|=d(P, Q)
$$

for all $P, Q \in D$.
Then, f is $1-1$ and hence is a ruler on l.
proof: Let's show the above conditions imply that f is $1-1$.
Let $P, Q \in D$ and $f(P)=f(Q)$.
We must show that $P=Q$.
We have that

$$
d(P, Q)=|f(P)-f(Q)|=0
$$

assumption
Since $d(P, Q)=0$ and d is a distance function we know $P=Q$.
Thus, f is $1-1$.
So, f is a ruler for l.

