Math 4300 9/27/23

Last thing from topic 4:
Def: $A-B-C-D$ means:

$$
A-B-C, A-B-D, A-C-D \text {, and } B-C-D
$$


say $A, B, C, D$ lie on $l$ and $f: l \rightarrow \mathbb{R}$ is a viler. Then the above says:

$$
\begin{aligned}
& \text { above says: } \\
& f(A)<f(B)<f(C)<f(0) \\
& \quad \text { or } \\
& f(0)<f(C)<f(B)<f(A)
\end{aligned}
$$

See HW 4 problem 7 for a simplification of the above definition

Topic 5 -
Line segment and rays
Def: Let $(\mathscr{D}, \mathcal{Z}, d)$ be a metric geometry. Let $A$ and $B$ be distinct points from $O$. The line segment from $A$ to $B$ is defined to

$$
\begin{aligned}
& \text { be the set } \\
& \overline{A B}=\{A\} \cup\{B\} \cup\{C \in D \mid A-C-B\} \\
& =\{C \in D \mid C=A \text { or } C=B \text { or } A-C-B\}
\end{aligned}
$$

Ex: Consider the hyperbolic plane $\mathcal{H}=\left(H \|, \mathcal{L}_{H}, d_{H}\right)_{\text {. }}$
Let $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$ be in HII where $x_{1}<x_{2}$ and $A, B$ lie on $L_{r}$.

Then

$$
\left.\begin{array}{rl}
\overline{A B} & =\left\{C=(x, y) \mid c \in L_{r},\right. \\
\\
x_{1} \leq x \leq x_{2}
\end{array}\right\}
$$

proof: See notes and HW 5 \# 11

Theorem: Let $(\mathscr{D}, \mathscr{Z}, d)$ be a metric geometry.
Let $A, B, C, D \in D$ with $A \neq B$ and $C \neq D$.
If $\overline{A B}=\overline{C D}$, then $\{A, B\}=\{C, D\}$

$$
\begin{aligned}
& \text { says either: } \\
& A=C \text { and } B=D \\
& \text { or } \\
& A=D \text { and } B=C
\end{aligned}
$$

proof: See notes

This theorem makes the following definition well defined.

Def: Let $(d, \mathcal{L}, d)$ be a metric geometry.
Let $A, B \in \rho$ with $A \neq B$.
The endpoints of $\overline{A B}$ are $A$ and $B$.
The length of $\overline{A B}$ is

$$
A B=d(A, B)
$$

Def: Let $(\mathscr{D}, \mathscr{L}, d)$ be a metric geometry. Let $A, B \in \mathcal{O}$ with $A \neq B$.
The ray from $A$ towards $B$
is defined to be the set

$$
\begin{aligned}
& \begin{array}{l}
\overrightarrow{A B}=\overrightarrow{A B} \cup\{C \in \mathcal{D} \mid A-B-C\}
\end{array} \\
& =\left\{C \in P \left\lvert\, \begin{array}{l}
=A \text { or } A-C-B \text { or } \\
C=B \text { or } A-B-C
\end{array}\right.\right\}
\end{aligned}
$$



Theorem: Let $(D, \mathcal{Z}, d)$ be a metric geometry. Let $A, B, C, D \in D$ with $A \neq B$ and $C \neq D$.

Then:
(i) If $C \in \overrightarrow{A B}$ and $C \neq A$, then $\overrightarrow{A C}=\overrightarrow{A B}$

(ii) If $\overrightarrow{A B}=\overrightarrow{C D}$, then $A=C$
proof: See HW 5 \# 9

The previous theorem makes the following definition well-defined

Def: Let $(\mathscr{y}, \mathcal{L}, d)$ be a metric geometry.
Let $A, B \in \mathcal{O}^{2}$ with $A \neq B$.
The vertex (or initial point) of the ray $\overrightarrow{A B}$ is the point $A$.

WW 5 problem 6:
Let $(\mathscr{P}, \mathscr{Z}, d)$ be a metric geometry. Let $A, B \in \mathscr{O}$ with $A \neq B$.
Then:
(a) $\overline{A B}=\overline{B A}$
(b) $\overrightarrow{A B} \subseteq \overrightarrow{A B} \subseteq \overleftrightarrow{A B}$
(c) $\overrightarrow{A B}=\overrightarrow{A B} \cap \overrightarrow{B A}$
(d) $\overleftrightarrow{A B}=\overrightarrow{A B} \cup \overrightarrow{B A}$

Theorem: Consider the $\overline{\text { Euclidean plane } \mathcal{E}}=\left(\mathbb{R}^{2}, \mathcal{L}_{E}, d_{E}\right)$ Let $A, B \in \mathbb{R}^{2}$ with $A \neq B$.

$$
\begin{aligned}
& \overline{A B}=\left\{C \in \mathbb{R}^{2} \left\lvert\, \begin{array}{l}
C=A+t(B-A) \\
\text { where } 0 \leq t \leq 1
\end{array}\right.\right\} \\
& \overrightarrow{A B}=\left\{C \in \mathbb{R}^{2} \left\lvert\, \begin{array}{l}
C=A+t(B-A) \\
\text { where } 0 \leq t
\end{array}\right.\right\}
\end{aligned}
$$

proof: HW 5 \# 10

