$$
\begin{aligned}
& \text { Math } 4300 \\
& 9 / 20 / 23
\end{aligned}
$$

Theorem: Let $A, B \in \mathbb{R}^{2}$ and $\alpha, \beta \in \mathbb{R}$. Then:
(i) $A+B=B+A$
(ii) $A+(B+C)=(A+B)+C$
(iii) $\alpha(A+B)=\alpha A+\alpha B$
(iv) $(\alpha+\beta) A=\alpha A+\beta A$
(v) $\langle A, B\rangle=\langle B, A\rangle$
(vi) $\langle\alpha A, B\rangle=\alpha\langle A, B\rangle$
(vii) $\langle A+B, C\rangle=\langle A, C\rangle+\langle B, C\rangle$
(viii) $\|\alpha A\|=|\alpha| \cdot\|A\|$
(ix) $\|A\|>0$ iff $A \neq(0,0) \leftarrow$
$[$ same as: $\|A\|=0$ iff $A=(0,0)]$
proof: HW 3

We are now going to re-describe lines in the Euclidean plane using the vector equation of a line from Calculus.

Def: Let A and B be two distinct points from \mathbb{R}^{2}.
Define

$$
L_{A B}=\{A+t(B-A) \mid t \in \mathbb{R}\}
$$

In calculus, the vector eqn of the line through A and B is

$$
A+t(B-A)
$$

Ex: $A=(1,1), B=(2,3)$

$$
\begin{aligned}
\frac{E_{x}}{L_{A B}} & =\{\underbrace{(1,1)}_{A}+t \underbrace{(1,2)}_{B-A} \mid t \in \mathbb{R}\} \\
& =\{(1+t, 1+2 t) \mid t \in \mathbb{R}\}
\end{aligned}
$$

t	$(1+t, 1+2 t)$
0	$(1,1)$
1	$(2,3)$
-1	$(0,-1)$
2	$(3,5)$

-2	$(-1,-3)$
$1 / 2$	$(3 / 2,2)$
\vdots	\vdots

Theorem: Let

$$
\mathcal{L}^{\prime}=\left\{L_{A B} \left\lvert\, \begin{array}{c}
A \text { and } B \text { are } \\
\text { distinct pts in } \\
\mathbb{R}^{2}
\end{array}\right.\right\}
$$

Then,

$$
\begin{aligned}
& \text { (i) } \mathcal{L}^{\prime}=\mathcal{L}_{E} \&\left\{\begin{array}{l}
\mathcal{L}_{E} \text { was all } \\
\text { the Euclidean } \\
\text { lines } L_{m, b} \\
\text { and La }
\end{array}\right\} \\
& \text { (ii) } L_{A B} \text { is the } \\
& \text { unique line }
\end{aligned}
$$ through A and B

Proof: See the notes I email to you

Theorem: If $A, B \in \mathbb{R}^{2}$, then

$$
d_{E}(A, B)=\|A-B\|
$$

Euclidean
distance
proof: HW 3.

Ex: $A=(1,1)$ and $B=(2,3)$

$$
\begin{aligned}
d_{E}(A, B) & =\sqrt{(1-2)^{2}+(1-3)^{2}} \\
& =\sqrt{1+4}=\sqrt{5}
\end{aligned}
$$

and

$$
\begin{aligned}
\|A-B\| & =\|(-1,-2)\| \\
& =\sqrt{(-1)^{2}+(-2)^{2}}=\sqrt{5}
\end{aligned}
$$

Theorem: Consider the Euclidean metric geometry

$$
\mathcal{E}=\left(\mathbb{R}^{2}, \mathcal{L}_{E}, d_{E}\right) .
$$

Let A, B be distinct points. Let $L_{A B}$ be the line through A and B.
Then, $f: L_{A B} \rightarrow \mathbb{R}$ defined
by $f(\underbrace{A+t(B-A)}_{\text {point on }})=t\|B-A\|$ line Lab
is a ruler for $L_{A B}$.
Note: $f(A)=f(A+O(B-A))=0\|B-A\|$

$$
=0
$$

and $f(B)=f(A+1 \cdot(B-A))=1 \cdot\|B-A\|$

$$
>0
$$

So, $f(A)=0$ and $f(B)>0$.
proof: See notes.

Topic 4-Betweenness
Def: Let (g, \mathcal{L}, d) be a metric geometry.
Let $A, B, C \in \gamma$ be points.
We say that $\frac{B \text { is between }}{\text { if }}$
A and C if
(i) A, B, C are distinct points
(ii) A, B, C are collinear
(iii) $d(A, B)+d(B, C)=d(A, C)$

We write $A-B-C$ to mean
that B is between A and C.

Ex: Consider the hyperbolic plane $\mathcal{H}=\left(H \|, \mathcal{L}_{H}, d_{H}\right)$
Let $A=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right), B=(0,1)$, and $C=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

Claim: $A-B-C$
(i) A, B, C are
 distinct points.
(ii) A, B, C are collinear since

$$
\begin{aligned}
& \text { they all lie on } \\
& { }_{0} L_{1}=\{(x, y) \in H \| \mid \underbrace{(x-0)^{2}+y^{2}=1}_{x^{2}+y^{2}=1}\}
\end{aligned}
$$

(iii) Recall that on L_{1} the distance function is $\quad \begin{gathered}c=0 \\ c=1 \\ r=1\end{gathered}$

$$
\begin{aligned}
d_{H}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =\left|\ln \left(\frac{\frac{x_{1}-c+r}{y_{1}}}{\frac{x_{2}-c+r}{y_{2}}}\right)\right| \\
& =\left|\ln \left(\frac{\frac{x_{1}+1}{y_{1}}}{\frac{x_{2}+1}{y_{2}}}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
d_{H}(A, B)=\left|\ln \left(\frac{-1 / 2+1}{\frac{\sqrt{3} / 2}{0+1}}\right)\right| & =\left\lvert\, \underbrace{\ln \left(\frac{1}{\sqrt{3}}\right.}_{\text {negative }}\right.) \mid \\
& =-\ln \left(\frac{1}{\sqrt{3}}\right) \\
-\ln (t)=\ln \left(t^{-1}\right) & =\ln (\sqrt{3})
\end{aligned}
$$

$$
\begin{aligned}
& d_{H}^{\uparrow_{\uparrow}(B, C)}|=| \ln (\frac{\left.\frac{\sqrt{3}}{2}\right)}{}\left(\frac{\frac{0+1}{1}}{\frac{1 / 2+1}{\sqrt{3} / 2}}\right)|=|\underbrace{\ln \left(\frac{\sqrt{3}}{3}\right)}_{\text {negative }}| \\
& =-\ln \left(\frac{\sqrt{3}}{3}\right)=\ln \left(\frac{3}{\sqrt{3}}\right) \\
& \left.(-1 / 2)^{\sqrt{3} / 2}\right)\left(\frac{1}{2} \frac{\sqrt{3}}{2}\right) \\
& \left.d_{H}\left(A_{,} C\right)=\left|\ln \left(\frac{\frac{-1 / 2+1}{\sqrt{3} / 2}}{\frac{1 / 2+1}{\sqrt{3} / 2}}\right)\right|=\ln \left(\frac{1 / \sqrt{3}}{3 / \sqrt{3}}\right) \right\rvert\, \\
& =\left|\ln \left(\frac{1}{3}\right)\right|=-\ln \left(\frac{1}{3}\right)=\ln (3)
\end{aligned}
$$

negative
So, $d_{H}(A, B)+d_{H}(B, C)$

$$
\begin{aligned}
& =\ln (\sqrt{3})+\ln \left(\frac{3}{\sqrt{3}}\right) \\
& =\ln \left(\sqrt{3} \cdot \frac{3}{\sqrt{3}}\right)=\ln (3)=d_{H}(A, C)
\end{aligned}
$$

Claim

