Math 4300 9/18/23

Test 1 moved to

Was Weds 10/11

Theorem: Let $(g>\mathcal{L}, d)$ be a metric geometry.
Let $l \in \mathcal{L}$ be a line and $f: l \rightarrow \mathbb{R}$ be a ruler/coordinate system for l.

Let $a \in \mathbb{R}$ and $\varepsilon= \pm 1$.
Define $h_{a, \varepsilon}: l \rightarrow \mathbb{R}$ by

$$
h_{a, \varepsilon}(P)=\sum_{\substack{\varepsilon=1 \text { shifts } f \text { by a } \\ \varepsilon=-1 \\ \text { does nothing }_{\text {flips } f}}}^{(f(P)-a)}
$$

Then, ha, ε will be a ruler for l.
proof: See notes.

Ex: Consider the Euclidean plane. Let $\ell=L_{2}$.
The standard ruler is
$f: L_{2} \rightarrow \mathbb{R}$ is $f(2, y)=y$

Let's make a new ruler using the above theorem with $a=2$ and $\varepsilon=-1$.
Let $h=h_{a, \varepsilon}=h_{2,-1}$ be as above.
so, $h(P)=(-1) \cdot[f(P)-2]$

$$
\begin{aligned}
& h(2,0)=-[f(2,0)-2]=-[0-2]=2 \\
& h(2,2)=-[f(2,2)-2]=-[2-2]=0
\end{aligned}
$$

Theorem: (Ruler placement theorem)
Let (D, \mathcal{L}, d) be a metric geometry. Let $l \in \mathcal{L}$ be a line. Let $A, B \in l$.
Then there exists a ruler $h: l \rightarrow \mathbb{R}$ where
$h(A)=0$ and $h(B)>0$.

proof: We are in a metric geometry. Thus there exists a ruler $f: l \rightarrow \mathbb{R}$ for l.

Case 1: Suppose $f(B)>f(A)$
Then define

$$
h(P)=\underbrace{1}_{\substack{i \\
\varepsilon=1}} \cdot \underbrace{(f(P)-f(A)}_{\begin{array}{c}
\text { shift } \\
f(A)
\end{array}})
$$

Then h is a ruler by the previous theorem and

$$
\begin{aligned}
& h(A)=f(A)-f(A)=0 \\
& h(B)=f(B)-f(A)>0
\end{aligned}
$$

$$
c f(B)>f(A)
$$

Case 2: Suppose $f(B)<f(A)$
Then define

$$
\begin{aligned}
& \text { en define } \\
& \qquad(P)=-1) \cdot \underbrace{f(P)-f(A)}_{\substack{\text { Shift } f(A) \\
f(A)}}]
\end{aligned}
$$

Then h is a ruler by the

$$
\begin{aligned}
& \text { Then } \\
& \text { previous the orem and } \\
& \begin{aligned}
& h(A)=(-1) \cdot[f(A)-f(A)]=0 \\
& h(B)=(-1) \cdot[f(B)-f(A)] \sqrt{\text { since }} \\
&=f(A)-f(B)>0 \\
& f(B)< \\
& f(A)
\end{aligned}
\end{aligned}
$$

Example: Consider the Euclidean plane. Let $A=(1,0)$ and $B=(-1,2)$. Let $\ell=\overleftrightarrow{A B}$
Find a ruler $h: l \rightarrow \mathbb{R}$ where $h(A)=0$ and $h(B)>0$.

Solution:
A and B lie on

$$
\begin{aligned}
& A \text { and } B \text { lie on } \\
& \ell=L_{-1,1}=\{(x, y) \mid y=-x+1\} \\
& f: l \rightarrow \mathbb{R}
\end{aligned}
$$

The standard is $f: l \rightarrow \mathbb{R}$ where $f(x, y)=\sqrt{2} \times \&(m=-1$

$$
\begin{aligned}
& \text { standard ruler on } L_{m, b} \\
& f(x, y)=x \sqrt{1+m^{2}}
\end{aligned}
$$

In this case $f(B)<f(A)$ so we need to both shift and flip!
The formula for h is

$$
\begin{aligned}
& h(P)=\underbrace{[\underbrace{f(p)-f(A)]}_{\text {shift to make }}}_{\begin{array}{l}
\text { flip } \\
\varepsilon=-1 \\
\text { to make } \\
h(-1) \\
h(B)>0 \\
\\
h(A)=0
\end{array}} \\
& = \\
& f(A)-f(P)
\end{aligned}
$$

So, $\left.\begin{array}{rl}h(x, y) & =f(A)-f(x, y) \\ & =\sqrt{2}-\sqrt{2} x\end{array}\right] p=(x, y)$

$$
\begin{aligned}
& h(A)=h(1,0)=\sqrt{2}-\sqrt{2}(1)=0 \\
& h(B)=h(-1,2)=\sqrt{2}-\sqrt{2}(-1)=2 \sqrt{2}>0
\end{aligned}
$$

Theorem: Let $(\boldsymbol{j}, \mathcal{L}, d)$ be a metric geometry. Let $l \in \mathcal{L}$ and $f: l \rightarrow \mathbb{R}$ be a ruler. If $g: l \rightarrow \mathbb{R}$ is another ruler for l, then there exists $a \in \mathbb{R}$ and $\varepsilon= \pm 1$ where

$$
\begin{aligned}
& \text { and } \varepsilon=\varepsilon(p)=\varepsilon(p)-a) \\
& g(p)
\end{aligned}
$$ for all $P \in \ell$.

proof: See Millman/Parker page 39

Topic 3-More on the Euclidean plane

Def: Let $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$ be in \mathbb{R}^{2}. Let $\alpha \in \mathbb{R}$.
Define the following:
(i) $A+B=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$
(ii) $\alpha A=\left(\alpha x_{1}, \alpha y_{1}\right)$
(iii) $A-B=\left(x_{1}-x_{2}, y_{1}-y_{2}\right)$
(iv) $\langle A, B\rangle=x_{1} x_{2}+y_{1} y_{2}$
$(v)\|A\|=\sqrt{\langle A, A\rangle}$

$$
=\sqrt{x_{1}^{2}+y_{1}^{2}}
$$

Ex: Let $A=(1,2)$ and

$$
B=(-1,5)
$$

Then,

$$
\begin{aligned}
& \text { Then, } \\
& \begin{array}{l}
A+B=(1-1,2+5)=(0,7) \\
3 A=(3(1), 3(2))=(3,6) \\
A-B=(1-(-1), 2-5)=(2,-3) \\
\langle A, B\rangle=(1)(-1)+(2)(5)=9 \\
\|A\|=\sqrt{(1)^{2}+(2)^{2}}=\sqrt{5}
\end{array}
\end{aligned}
$$

