Math 4300

$$
9 / 13 / 23
$$

Theorem: Let $(\mathcal{P}, \mathcal{Z})$ be an incidence geometry. Suppose for each line l there exists a bijection $f_{l}: l \rightarrow \mathbb{R}$. Define $d: O \mathcal{P} \rightarrow \mathbb{R}$ as follows: Given $P, Q \in \mathcal{O}$, let l be the Unique line l through P and Q, \qquad and define

$$
d(P, Q)=\left|f_{l}(P)-f_{l}(Q)\right|
$$

The function d given above is a distance function and makes $(\mathscr{D}, \mathcal{L}, d)$ a metric geometry where f_{l} is a ruler for l.
proof: All we have to show is that d is a distance function. Let $P, Q \in \mathcal{O}$. Let l be the Unique line through P and Q
(i) $d(P, Q)=\underbrace{\left|f_{l}(P)-f_{l}(Q)\right|}_{\text {abs. value }} \geqslant 0$
(ii) $d(P, Q)=0$
iff $\left|f_{l}(P)-f_{l}(Q)\right|=0$
$x \in \mathbb{R}$
if $f_{l}(P)-f_{l}(Q)=0$
iff $f_{l}(P)=f_{l}(Q)$
iff $P=Q$
because f_{l} is a bijection
(iii)

$$
\begin{aligned}
d(P, Q) & =\left|f_{l}(P)-f_{l}(Q)\right| \\
& =\left|f_{l}(Q)-f_{l}(P)\right| \\
& =d(Q, P)
\end{aligned}
$$

Let's apply this to the Hyperbolic plane $\mathcal{H}=\left(H H_{H} \mathcal{L}_{H}\right)$.
Let $P, Q \in H H_{l}$.
We want to define a distance function that respects the bijections that we made on Monday.

Case 1: Suppose $P=\left(a, y_{1}\right)$ and $Q=\left(a, y_{2}\right)$ both lice on a^{L}.
Recall that $g:{ }_{a} L \rightarrow \mathbb{R}$ defined by $g(a, y)=\ln (y)$ was a bijection.

Define

$$
\begin{aligned}
d(P, Q) & =|g(P)-g(Q)| \\
& =\left|\ln \left(y_{1}\right)-\ln \left(y_{2}\right)\right| \\
& =\left|\ln \left(\frac{y_{1}}{y_{2}}\right)\right|
\end{aligned}
$$

Case 2: Suppose $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ both lie on L_{r}.
Recall that $f:{ }_{c} L_{r} \rightarrow \mathbb{R}$ given by $f(x, y)=\ln \left(\frac{x-c+r}{y}\right)$ is a bijection
Define

$$
\begin{aligned}
d(P, Q) & =|f(P)-f(Q)| \\
& =\left|\ln \left(\frac{x_{1}-c+r}{y_{1}}\right)-\ln \left(\frac{x_{2}-c+r}{y_{2}}\right)\right| \\
& =\left|\ln \left(\frac{\left(\frac{x_{1}-c+r}{y_{1}}\right)}{\left(\frac{x_{2}-c+r}{y_{2}}\right)}\right)\right|
\end{aligned}
$$

Def: Given the hyperbolic plane $\mathcal{H}=\left(H \|, \mathcal{L}_{H}\right)$, define $d_{H}: H\|\times H\| \mathbb{R}$ as follows:
Let $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$
Define

$$
d_{H}(P, Q)=\left\{\left.\begin{array}{ll}
\left|\ln \left(\frac{y_{1}}{y_{2}}\right)\right| & \text { if } P, Q \in \in_{a} L \\
\left\lvert\, \ln \left(\frac{x_{1}-c+r}{y_{1}} X_{1}=x_{2}=a\right.\right. \\
\frac{x_{2}-c+r}{y_{2}}
\end{array} \right\rvert\, \quad \text { if } P, Q \in L_{c} L_{r}\right.
$$

Theorem: $\mathcal{f} f=\left(H \|, \mathcal{L}_{H}, d_{H}\right)$ is a metric geometry using the voles
$f:{ }_{a} L \rightarrow \mathbb{R}$ given by $f(a, y)=\ln (y)$
$f:{ }_{c} L_{r} \rightarrow \mathbb{R}$ given by $f(x, y)=\ln \left(\frac{x+c-r}{y}\right)$
We call these the standund rulers for \mathcal{H}.
proof: Already did it all.
Note: I changed g to f to simplify.

Ex: Let $P=\left(1, \frac{1}{3}\right)$ and $Q=(1,4)$ be in the hyperbolic plane.
These points lie on, L.

Standard ruler:

$$
\begin{aligned}
& f(\rho)=\ln \left(\frac{1}{3}\right) \approx-1.0986 \ldots \\
& f(Q)=\ln (4) \approx 1,386 \ldots
\end{aligned}
$$

The coordinates of P, Q under the standard ruler are

$$
\begin{aligned}
& f(p)=\ln (1 / 3) \approx-1.0986 \\
& f(Q)=\ln (4) \approx 1.386
\end{aligned}
$$

And

$$
\begin{aligned}
& \text { And } \\
& \begin{aligned}
d_{H}(P, Q)= & \left|\ln \left(\frac{1 / 3}{4}\right)\right|=\left|\ln \left(\frac{1}{12}\right)\right| \\
& \approx 2.4849 \\
& \underset{\operatorname{same} \text { as }}{ }|\ln (1 / 3)-\ln (4)|
\end{aligned}
\end{aligned}
$$

Ex: Recall from Topic 1 that $P=(0,1), Q=(1,2), R=(2, \sqrt{5})$ all lie on $2 L^{5}$. One can also show that $S=(3,2)$ is also on $2^{L} \sqrt{5} \quad[\sqrt{5} \approx 2,23]$

$$
\begin{aligned}
& f(Q)=\ln \left(\frac{1-2+\sqrt{5}}{2}\right)=\ln \left(-\frac{1}{2}+\frac{\sqrt{5}}{2}\right) \approx-0.4812 \\
& f(R)=\ln \left(\frac{2-2+\sqrt{5}}{\sqrt{5}}\right)=\ln (1)=0 \\
& f(s)=\ln \left(\frac{3-2+\sqrt{5}}{2}\right)=\ln \left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right) \approx 0.4812
\end{aligned}
$$

And

$$
\begin{aligned}
& \text { And } \\
& \begin{aligned}
d_{H}(P, S)=|f(P)-f(S)| & =\left|\ln (-2+\sqrt{5})-\ln \left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right)\right| \\
& \approx 1.92485
\end{aligned} \\
& \left.\underbrace{d_{H}(P, S)}_{\text {same as }}=\ln \left(\frac{\frac{0-2+\sqrt{5}}{1}}{\frac{3-2+\sqrt{5}}{2}}\right) \right\rvert\, \in \begin{array}{l}
\text { from } \\
d_{\text {It }} \\
\text { formula }
\end{array}
\end{aligned}
$$

