Math 4300 8/30/23

Def: Let (g, \mathcal{L}) be an abstract geometry. A set of points $S \subseteq P$ is called collinear if there exists a line $\ell \in \mathcal{L}$ where $S \subseteq \ell$.
[That is, all of S lies on a line.]
If S is not collinear then we call the set S non-collineur.

Ex: In the Euclidean plane $A=(1,2), B=(2,3), C=(3,4)$ are collinear.

However, $P=(0,1), Q=(1,0), R=(1,1)$ we non-collinear.
There is n_{0} single tine l that goes through P, Q, and R.

Ex: In the Hyperbolic plane the points $(0,1),(1,2),(2, \sqrt{5})$ one collinear, because they all lie on

$$
\begin{aligned}
& \text { all lie on } \\
& \left.2 L_{\sqrt{5}}=\{(x, y) \in H \|)(x-2)^{2}+y^{2}=\sqrt{5}^{2}\right\}
\end{aligned}
$$

$\sqrt{5} \approx 2.236$
We already saw $(0,1),(1,2)$
lie on $2^{2} \sqrt{s}$
And

because

$$
\begin{gathered}
\underset{\uparrow}{2} \text { cause } \\
\underset{x=2}{(2-2)^{2}}+(\sqrt{5})^{2}=(\sqrt{5})^{2} \\
y=\sqrt{5}
\end{gathered}
$$

Note that $(3,2),(4,1)$ also lie on ${ }_{2} L_{\sqrt{5}}$.
So, $(0,1),(1,2),(2, \sqrt{5}),(3,2),(4,1)$ are all collinear.

Def: An abstract geometry $(\mathscr{P}, \mathcal{L})$ is called an incidence geometry if
(i) any two points $P, Q \in \mathcal{Z}$ lie un a unique line $l \in \mathcal{L}$.
(ii) there exist three points $A, B, C \in \mathcal{O}$ that are non-collinear.

Note: (i) adds "unique" to the abstract geometry. (ii) says \mathcal{O} is a "plane"

Notation: In an incidence geometry, the vnique line l that P and Q lie on is denoted by $l=\overleftrightarrow{P Q}$

Theorem: The Euclidean plane $\varepsilon=\left(\mathbb{R}^{2}, \mathcal{L}_{E}\right)$ is an incidence geometry.
proof: We already showed that \mathcal{E} is un abstract geometry. Let's show that (i) and (ii) above hold.

Let's show (i).
Let $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$ be distinct points, that $P \neq Q$.
We already know, since ε is an abstract geometry, that there exists a line through P and Q. We must show there is a unique line through P and Q.
Case 1: Suppose $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ lie on L_{a} and L_{b} where $a \neq b$.

Since $P, Q \in L_{a}$ we know

$$
a=x_{1}=x_{2} .
$$

Since $P, Q \in L_{b}$ we
know $b=x_{1}=x_{2}$

But then $a=b$.
Contradiction. Can't happen.
Case 2: Suppose $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ both lie on L_{a} and $L_{m, b}$.
Since $P, Q \in L_{a}$ we know

$$
a=x_{1}=x_{2}
$$

Since $P, Q \in L_{m, b}$ we know

$$
\underbrace{y_{1}=m x_{1}+b}_{P \in L_{m, b}} \text { and } \underbrace{y_{2}=m x_{2}+b}_{Q \in L_{m, b}}
$$

This implies that

$$
\begin{aligned}
& y_{1}=m x_{1}+b=m a+b=m x_{2}+b=y_{2} \\
& \uparrow \\
& x_{1}=a \quad x_{2}=a
\end{aligned}
$$

But then

$$
\begin{aligned}
& \text { ut then } \\
& P=\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)=Q
\end{aligned}
$$

Contradiction since $P \neq Q$.
Case 3: Suppose $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ lie on $L_{m, b}$ and $L_{n, c}$ and

$$
L_{m, b} \neq L_{n, c} .
$$

Since $P, Q \in L_{m, b}$, we know

$$
\underbrace{y_{1}=m x_{1}+b}_{p \in L_{m, b}} \text { and } \underbrace{y_{2}=m x_{2}+b}_{Q \in L_{m, b}}
$$

If $x_{1}=x_{2}$, then $P, Q \in L_{x_{1}}$ Which we dealt with in the previous case.
So we can assume $x_{1} \neq x_{2}$.
Thus, $x_{1}-x_{2} \neq 0$.
Subtracting the equs above gives

$$
\begin{aligned}
y_{2}-y_{1} & =\left(m x_{2}+b\right)-\left(m x_{1}+b\right) \\
& =m\left(x_{2}-x_{1}\right)
\end{aligned}
$$

Thus, $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \cdot \leftarrow \begin{aligned} & \text { ok since } \\ & x_{2}-x_{1} \neq 0\end{aligned}$
Since $y_{1}=m x_{1}+b$ we know

$$
b=y_{1}-m x_{1} .
$$

Now do the same steps but use $L_{n, c}$ line and you'll get that

$$
n=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { and } c=y_{1}-m x_{1}
$$

Thus,

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=n
$$

and

$$
b=y_{1}-m x_{1}=y_{1}-m x_{1}=c
$$

So, $L_{m, b}=L_{n, c}$.
Contradiction, since $L_{m, b} \neq L_{n, c}$.
By cases $1,2,3$ we have proven property (i).

Let's show property ($\ddot{\text { L }}$) We need three non-collinear
points in δ.
Consider $P=(0,0), Q=(1,0)$
and $R=(0,1)$
Since these points don't all have the
same x-coordinate
they don't all lie un a vertical line.
Can we have $P, Q, R \in L_{m, b}$?

$$
\begin{aligned}
& \text { If so, then } \\
& 0=b \leftarrow P \in L_{m, b} \\
& 0=m+b \leftarrow Q \in L_{m, b} \\
& 1=b \leftarrow R \in L_{m, b}
\end{aligned}
$$

Cun't happen!

Thus property (in) is true. So, \mathcal{E} is an incidence geometry.

Theorem: The hyperbolic plane $\mathcal{H}=\left(H I, \mathcal{L}_{H}\right)$ is an incidence geometry.
proof: HW.

Theorem: Let $(\mathscr{g}, \mathcal{L})$ be a_{n} incidence geometry.
Let $l_{1}, l_{2} \in \mathcal{L}$ be two lines.
If $l_{1} \cap l_{1}$ contains two or more points, then $l_{1}=l_{2}$.
proof: Suppose $P, Q \in l_{1} \cap l_{2}$
Where $P \neq Q$.
By prop (i) of incidence geometries there is a unique line through P and Q.
Since $P, Q \in l_{1} \cap l_{2}$ we

Know $P, Q \in l_{1}$ and $P, Q \in l_{2}$.
Since $P, Q \in l$, we know

$$
l_{1}=\overleftrightarrow{P Q} .
$$

Since $P, Q \in l_{2}$, we know

$$
l_{2}=\stackrel{\rightharpoonup}{P Q}
$$

So, $l_{1}=l_{2}$.

Corollary: Let $(\mathscr{P}, \mathcal{Z})$ be an incidence geometry
Let l_{1}, l_{2} be two lines in \mathscr{L}. Then either
(i) l_{1} and l_{2} are parallel

$$
\left[l_{1}=l_{2} \text { or } l_{1} \cap l_{2}=\phi\right]
$$

or
(ii) l_{1} and l_{2} intersect in exactly one point.

$$
\left[l_{1} \cap l_{2}=\{p\}\right]
$$

proof: Let $l_{1}, l_{2} \in \mathcal{Z}$.
cause 1: Suppose $l_{1} \cap l_{2}=\phi$

Then, $l_{1} \| \ell_{2}$.
Case 2: Suppose $l_{1} \cap l_{2}=\{p\}$. Then we are in (ii) above.
case 3: Suppose $l_{1} \cap l_{2}$ has two or more points.
Then, the previous the says that $l_{1}=l_{2}$.
So, $l_{1} \| l_{2}$.

