Math 4300 8/28/23

Def:
Let $\mathcal{O}=\mathbb{H} \|=\{(x, y) \mid x, y \in \mathbb{R}$ and $y>0\}$.

A type I line is of the form

$$
L=\{(x, y) \in H H \mid x=a\}
$$

A type \mathbb{I} line is of the form

$$
L_{r}=\left\{(x, y) \in H \| \mid(x-c)^{2}+y^{2}=r^{2}\right\}
$$

where $c \in \mathbb{R}, r \in \mathbb{R}, r>0$.

Let \mathcal{L}_{H} be the set consisting of all type I and type II lines

Let $\mathcal{H}=\left(H H, \mathcal{L}_{H}\right)$.
H is called the Hyperbolic plane or the Poincare upperhalf plane.

Note that Ell $_{0} L_{\text {, }}$
Why?
Suppose $(x, y) \in_{-1} L \cap_{0} L_{\text {, }}$
Since $(x, y) \in_{-1} L$ we know $x=-1$

Plugging $(x, y)=(-1, y)$ into

$$
\begin{aligned}
& \operatorname{lgging}(x, y)=(-1, y) \\
& (x-0)^{2}+y^{2}=1^{2}<\text { eqn for .L }
\end{aligned}
$$

You get

$$
(-1)^{2}+y^{2}=1^{2}
$$

or $y=0$.
But then $(x, y)=(-1,0)$
which is not in HH1.
Thus, ${ }_{-1} \cap_{0} L_{1}=\phi$

Ex:

$$
\begin{aligned}
& { }_{5} L_{2}=\left\{(x, y) \in H \| \mid(x-5)^{2}+y^{2}=2^{2}\right\}
\end{aligned}
$$

HW problem: Show s_{2} and L^{L}, are parallel

Ex: In the hyperbolic plane find a line that goes through $P=(0,1)$ and $Q=(1,2)$.

Since P and Q have
 different x-coordinates they don't both lie on a type I line. Is there a type II line that they lie on? Plug $P=(0,1)$ and $Q=(1,2)$ into the equation: $(x-c)^{2}+y^{2}=r^{2}$.

$$
\begin{align*}
& (0-c)^{2}+1^{2}=r^{2} \tag{1}\\
& (1-c)^{2}+2^{2}=r^{2}
\end{align*}
$$

(2) $\leftarrow P \log Q$ in

This gives:

$$
\begin{array}{r}
c^{2}+1=r^{2} \\
c^{2}-2 c+5=r^{2} \tag{2}
\end{array}
$$

Subtract (1) - (2) to get:

$$
2 c-4=0
$$

That gives $c=2$.
Plug $c=2$ into (1) to get $r^{2}=2^{2}+1=5$
So, $r=\sqrt{5}$
Thus, $P=(0,1)$ and $Q=(1,2)$ both
lie un $L_{\sqrt{5}}$
$\sqrt{5} \approx 2.236$

Theorem: The hyperbolic plane $\mathcal{H}=\left(H H_{1}, \mathcal{L}_{H}\right)$ is an abstract geometry.
proof: By def $H \| \neq \phi, \mathcal{L}_{H} \neq \phi$.
(i) If $l \in \mathcal{L}_{H}$, then $l \subseteq H \|$.
(ii) Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ be in HI. We must find a line that goes through them.
case 1: Suppose $x_{1}=x_{2}=a$.
Then, $P=\left(a, y_{1}\right), Q=\left(a, y_{2}\right)$ lie on a^{L}.

Case 2: Suppose $x_{1} \neq x_{2}$.
Then, P, Q don't both lie on a type I line. What about a type II line?
We must solve:

$$
\begin{aligned}
& \left(x_{1}-c\right)^{2}+y_{1}^{2}=r^{2} \\
& \left(x_{2}-c\right)^{2}+y_{2}^{2}=r^{2}
\end{aligned}
$$

$7 P \log P$
(1) and Q
(2) $\left\{\begin{array}{c}\text { into } \\ (x-c)^{2}+y^{2}=r^{2}\end{array}\right.$

This becomes

$$
\begin{align*}
& x_{1}^{2}-2 c x_{1}+c^{2}+y_{1}^{2}=r^{2} \tag{1}\\
& x_{2}^{2}-2 c x_{2}+c^{2}+y_{2}^{2}=r^{2} \tag{2}
\end{align*}
$$

Subtract (1) - (2) to get

$$
\begin{aligned}
& \text { Subtract (1)-(2) to get } \\
& x_{1}^{2}-2 c x_{1}+y_{1}^{2}-x_{2}^{2}+2 c x_{2}-y_{2}^{2}=0
\end{aligned}
$$

Then

$$
c=\frac{y_{2}^{2}-y_{1}^{2}+x_{2}^{2}-x_{1}^{2}}{2\left(x_{2}-x_{1}\right)}
$$

Set $r=\sqrt{\left(x_{1}-c\right)^{2}+y_{1}^{2}} \in\left[\begin{array}{c}\text { where } \\ c \text { is }\end{array}\right.$
In HW you verify that P and Q indeed lie on c^{L}. where c, r are defined above.
(iii) We reed to show that any line has at least. two points.
A type I line a L has at least $(a, 1)$ and $(a, 2)$

A type II line c^{L} r has at least the points
(c, r) and
$\left(c+\frac{1}{2} r, \frac{\sqrt{3}}{2} r\right)$

check:

$$
\begin{aligned}
\underbrace{\left(\left(c+\frac{1}{2} r\right)-c\right)^{2}+\left(\frac{\sqrt{3}}{2} r\right)^{2}}_{(x-c)^{2}+y^{2}} & =\frac{1}{4} r^{2}+\frac{3}{4} r^{2} \\
& =r^{2}
\end{aligned}
$$

