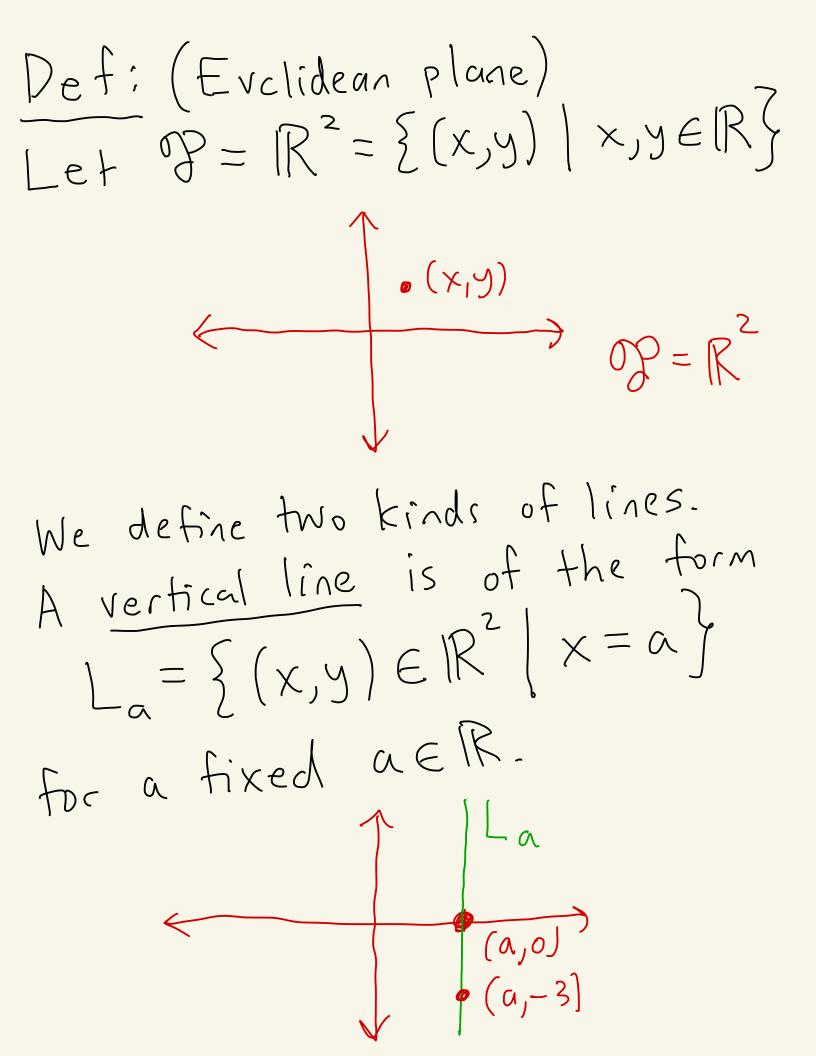
Math 4300 8/23/23

0

Topic 1 - Abstract geometries and Incidence geometries Def: An abstract geometry (P, 2) consists of a non-empty set P, Whose elements are called points, and a non-empty set Z, whose elements are called lines, such that: (i) If $l \in \mathcal{Z}$, then $l \in \mathcal{P}$ [a line is a set of points] (ii) For every two points P,QEP there exists a line le 2 where PEL and QEL Lthere exists a line l through P and Q]

are parallel, writich $\lambda_1 = 0$ if either $\lambda_1 = \lambda_2$ or $\lambda_1 \wedge \lambda_2 = 0$

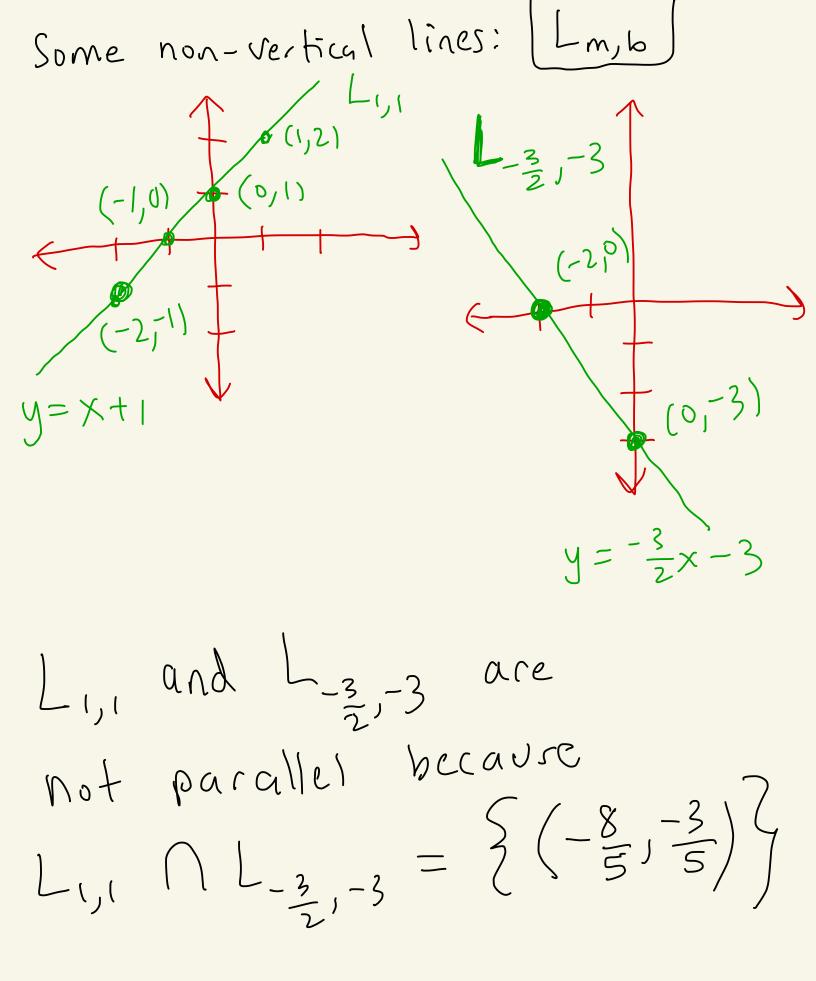


A non-vertical line is of the form

$$L_{m,b} = \frac{2}{2}(x,y) \in \mathbb{R}^{2}[y=mx+b]^{2}$$

where m, b are fixed real numbers.
(0,b) $L_{m,b}$
Let \mathcal{L}_{E} consist of all vertical
and non-vertical lines
Let $\mathcal{E} = (I\mathbb{R}^{2}, \mathcal{L}_{E})$
 \mathcal{E} is called the Euclidean plane

Ex: Consider the Euclidean plane $\mathcal{E} = (\mathbb{R}^2, \mathcal{I}_E).$ Here are some vertical lines: $\left(0,-\frac{1}{2}\right)\in L_{D}$ $(0, \frac{1}{2})$ $\left(0,-\frac{1}{2}\right)$ lier Un Lo (0,0) • (o,-l) L-2 (-2,3) $L_0 \cap L_{-2} = \varphi$ So Lo II L-2 (-2,0) they are (-2,-2) paralle/



Theorem: The Evolidean
plane
$$\mathcal{E} = (\mathbb{R}^2, \mathcal{X}_E)$$
 is an
abstruct geometry.
Proof:
 \mathbb{R}^2 and \mathcal{X}_E are both non-empty.
 \mathbb{R}^2 and \mathcal{X}_E are both non-empty.
 \mathbb{R}^2 and \mathcal{X}_E are both non-empty.
 \mathbb{R}^2 and $\mathbb{L}_{m,b} \subseteq \mathbb{R}^2$.
 \mathbb{R}^2 and \mathbb{R}^2 we need to
be points from \mathbb{R}^2 . We need to
be points from \mathbb{R}^2 . We need to
be points from \mathbb{R}^2 .
 \mathbb{R}^2 are through them.
 \mathbb{R}^2 are \mathbb{R}^2 and \mathbb{R}^2 .
 \mathbb{R}^2 and \mathbb{R}^2 are \mathbb{R}^2 .
 \mathbb{R}^2 are \mathbb{R}^2 are \mathbb{R}^2 .
 \mathbb{R}^2 are

Case 2: Suppose
$$x_1 \neq x_2$$
.
Set $m = \frac{y_2 - y_1}{x_2 - x_1}$ this is defined
because $x_2 - x_1 \neq 0$
Then set $b = y_1 - mx_1$.
We claim that both $P = (x_1, y_1)$
and $Q = (x_2, y_2)$ lie on Lm_1b .
Since $b = y_1 - mx_1$, we know $y_1 = mx_1 + b$
and so $P = (x_1, y_1)$ lier on Lm_1b .
What about $Q = (x_2, y_2)$ B
We have that
 $y_2 - mx_2 - b = y_2 - mx_2 - (y_1 - mx_1)$

$$= \left(\mathcal{Y}_{2} - \mathcal{Y}_{1} \right) - M \left(\chi_{2} - \chi_{1} \right)$$
$$= \left(\mathcal{Y}_{2} - \mathcal{Y}_{1} \right) - \left(\frac{\mathcal{Y}_{2} - \mathcal{Y}_{1}}{\chi_{2} - \chi_{1}} \right) \left(\chi_{2} - \chi_{1} \right)$$

$$= (y_2 - y_1) - (y_2 - y_1) = 0.$$

So, Q = (x_2, y_2) also lies on Lm, L.
(iii) A vertical line La (x-a)
Contains at least two points,
for example (a, o) and (a, 1).
A non-vertical line Lm, b
Contains at least two points,
for example (1, m+b)
and (2, 2m+b) are
both on Lm, b. (y=mx+b)

