Math 4300 $11 / 6 / 23$

HF 4
$\# 4 \quad A, B \in \mathcal{P}$ and $A \neq B$.
Let $C \in \stackrel{\rightharpoonup}{A B}$.
Then either:

$$
\begin{aligned}
& \text { Then either: } \\
& C-A-B, C=A, A-C-B, C=B \text {, or } A-B-C
\end{aligned}
$$

proof: Let $f: \stackrel{\leftrightarrow}{A B} \rightarrow \mathbb{R}$ be a ruler for $\overleftrightarrow{A B}$.
We know $f(A) \neq f(B)$ since f is $1-1$ and $A \neq B$.
Here are all the possibilities:
$(\bar{\lambda}) f(C)<f(A)<f(B)$
(ii) $f(C)<f(B)<f(A)$

$(i v) f(c)=f(B)$
(v) $f(A)<f(C)<f(B)$
(vi) $f(B)<f(c)<f(A)$
(vii) $f(A)<f(B)<f(C)$
$($ viii $) f(B)<f(A)<f(c)$
This gives:
(i) We get $C-A-B$.
(ii) We get $C-B-A$.

This implies $A-B-C . \begin{aligned} & \text { If } \\ & x-y-z \text {, } \\ & \text { then } \\ & z-y-x .\end{aligned}$
(iii) Since f is $1-1$, we get $A=C$
(iv) Since f is $1-1$ we get $C=B$.
(v) This gives $A-C-B$.
(vi) This gives $B-C-A$.

This implies $A-C-B$.
(vii) This gives $A-B-C$.
(viii) This gives $B-A-C$.
which yields $C-A-B$.

HF 4
(3) In the hyperbolic plane let $A=(1,2), B=(1,4), C=(1,5)$.
(a) Determine if collinear.
(b) Determine if $A-B-C, A-C-B$, or $B-A-C$.
(a)

They are collinem and on, L.
(b) Ruler way-easier

Standard ruler $f:, L \rightarrow \mathbb{R}$

$$
\text { is } f(1, y)=\ln (y)
$$

We get

$$
\begin{aligned}
& f(A)=\ln (2) \approx 0.693 \\
& f(B)=\ln (4) \approx 1,386 \\
& f(C)=\ln (5) \approx 1.609
\end{aligned}
$$

Since $f(A)<f(B)<f(C)$, we know $A-B-C$.

Distance way

$$
\begin{aligned}
& \text { Distance way } \\
& d_{H}(A, B)=\left|\ln \left(\frac{2}{4}\right)\right|=\left|\ln \left(\frac{1}{2}\right)\right|=-\ln \left(\frac{1}{2}\right) \\
& d_{H}(B, C)=\left|\ln \left(\frac{4}{5}\right)\right|=-\ln \left(\frac{4}{5}\right)
\end{aligned}
$$

$$
d_{H}(A, C)=\left|\ln \left(\frac{2}{5}\right)\right|=-\ln \left(\frac{2}{5}\right)
$$

Then,

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
& d_{H}(A, B)+d_{H}(B, C)=-\ln \left(\frac{1}{2}\right)-\ln \left(\frac{4}{5}\right) \\
&=\ln (2)+\ln \left(\frac{5}{4}\right) \\
&=\ln (A) \\
&=\ln \left(A^{-1}\right)
\end{aligned} \\
& = \\
& =\ln \left(\frac{5}{4}\right) \\
& \\
& =
\end{aligned}
$$

So, $A-B-C$.

HWS Hyperbolic plane
\#5

$$
\begin{aligned}
& P=(1,2), Q=(1,4) \\
& A=(0,2), B=(1, \sqrt{3})
\end{aligned}
$$

Find $C \in \overrightarrow{A B}$ where $\overrightarrow{A C} \simeq \overrightarrow{P Q}$.

Measure $\overline{P Q}$:

$$
\frac{\text { Measure } P Q}{d_{H}(P, Q)=\left|\ln \left(\frac{4}{2}\right)\right|=|\ln (2)|=\ln (2)}
$$

Want: Find $C \in \overrightarrow{A B}$ where $d_{H}(A, C)=\ln (2)$

Let $C=(x, y)$.
Want to solve:

$$
\begin{aligned}
\ln (2) & =d_{H}(A, C) \\
& =d_{H}((0,2),(x, y)) \\
& =\left|\ln \left(\frac{\frac{0-0+2}{2}}{\frac{x-0+2}{y}}\right)\right| \\
& =\left|\ln \left(\frac{1}{\frac{x+2}{y}}\right)\right|=\left|\ln \left(\frac{y}{x+2}\right)\right|
\end{aligned}
$$

So we need $\ln (2)= \pm \ln \left(\frac{y}{x+2}\right)$.
So either

$$
\ln (2)=\ln \left(\frac{y}{x+2}\right) \text { or } \ln (2)=\frac{-\ln \left(\frac{y}{x+2}\right)}{\ln \left(\frac{x+2}{y}\right)}
$$

So either

$$
z=\frac{y}{x+2} \text { or } z=\frac{x+2}{y}
$$

So either

$$
\begin{equation*}
\frac{\text { either }}{y=2 x+4} \text { or } y=\frac{1}{2} x+1 \tag{2}
\end{equation*}
$$

Now plug these into

$$
\begin{aligned}
& L_{2}^{L_{2}} \text { to get } C \\
& x^{2}+y^{2}=4
\end{aligned}
$$

We get these two possibilities:

$$
\begin{align*}
& x^{2}+(2 x+4)^{2}=4 \tag{11}\\
& x^{2}+\left(\frac{1}{2} x+1\right)^{2}=4 \tag{2}
\end{align*}
$$

These become:

$$
\begin{align*}
& 5 x^{2}+16 x+12=0 \tag{1}\\
& 5 x^{2}+4 x-12=0 \tag{2}
\end{align*}
$$

(1) becomes: $(5 x+6)(x+2)=0$

So, $x=-\frac{6}{5}$ or $x=-2$
We need C on the right side of A, so neither of these
 x's work.
(2) becomes: $(5 x-6)(x+2)=0$

So, $x=\frac{6}{5}$ or $x=-2$.
only $x=\frac{6}{5}$ is positive.

Now plug $C=\left(\frac{6}{5}, y\right)$ into L_{2} to yet:

$$
x^{2}+y^{2}=4
$$

$$
\left(\frac{6}{5}\right)^{2}+y^{2}=4
$$

This gives $y^{2}=4-\frac{36}{25}=\frac{100-36}{25}=\frac{64}{25}$
So, $y= \pm \sqrt{\frac{64}{25}}= \pm \frac{8}{5}$
Need $y>0$ so we get $y=\frac{8}{5}$.
Thus, $C=\left(\frac{6}{5}, \frac{8}{5}\right)$.
We should have $d_{H}(A, C)=\ln (2)$

$$
\begin{aligned}
\left.\left\lvert\, \begin{array}{rl}
\frac{\text { Check: }}{d_{H}(A, C)} & =\left|\ln \left(\frac{\frac{0-0+2}{2}}{\frac{6 / 5-0+2}{8 / 5}}\right)\right| \\
& \left.=\left|\ln \left(\frac{1}{\frac{16 / 5}{8 / 5}}\right)\right|=\ln \left(\frac{8}{16}\right) \right\rvert\, \\
& =\left|\ln \left(\frac{1}{2}\right)\right|=-\ln \left(\frac{1}{2}\right)=\ln (2)
\end{array}\right.\right) .
\end{aligned}
$$

