Math 4300 11/6/23

 $(\lambda) f(c) = f(B)$ (v) f(A) < f(c) < f(b)(vi) f(B) < f(C) < f(A)(vii) f(A) < f(B) < f(C)(viii) f(B) < f(A) < f(c)This gives. (i) We get C-A-B. |If |X-1-2, (in we get C-B-A. This implies A-B-C. J then Z-Y-X. (in) Since Fis 1-1, we get A=C. (iul Since fig 1-1 we get C=B. (1) This gives A-C-B.

(vi) This gives B-C-A. This implies A-C-B. (vii) This gives A-B-C. (viii) This gives B-A-C. Which yields C-A-B.

HW 4) In the hyperbolic plane 3 A = (1,2), B = (1,4), C = (1,5).lef (a) Determine if collinear. (b) Determine if A-B-C, A-C-B, Or B-A-C.

 (Λ) B=(1,4) $\Phi A = (1,2)$ collinear and on , L They are

We know
$$A = B = C$$
,
 $Distance way \int d_{H}(A,B) = |ln(\frac{z}{4})| = |ln(\frac{1}{2})| = -ln(\frac{1}{2})$
 $d_{H}(B,C) = |ln(\frac{4}{5})| = -ln(\frac{4}{5})$

main Topic fleorem

$$f(B) = \ln(4) \approx 1,586$$

 $f(C) = \ln(5) \approx 1,609$
Since $f(A) < f(B) < f(C)$,
we know $A - B - C$.

Ne get

$$f(A) = |n(2) ≈ 0.693$$

 $f(B) = |n(4) ≈ |.386$
 $f(C) = |n(5) ≈ |.609$

(b) Ruler way-easier
Standard ruler
$$f; L \rightarrow R$$

is $f(1, y) = ln(y)$

 $d_{\mu}(A,C) = \left| \left| n\left(\frac{z}{5}\right) \right| = -\left| n\left(\frac{z}{5}\right) \right|$ Then, $d_{H}(A,B) + d_{H}(B,C) = -\ln(\frac{1}{2}) - \ln(\frac{4}{5})$ $= \ln(2) + \ln(\frac{5}{4})$ -(n(A)) $=(n(A^{-1}))$ $= 1 \left(2 \cdot \frac{5}{4} \right)$ $= \left[n \left(\frac{5}{2} \right) \right]$ $= - \left[n \left(\frac{2}{5} \right) = d_{H} \left(A, c \right) \right]$

So, A-B-C.

HWS Hyperbolic plane
(#5)
$$P = (1,2), Q = (1,4)$$

 $A = (0,21, B = (1,53)$
 $A = (0,21, B = (1,53)$
Find CEAB where $AC \simeq PQ$.

Measure PQ: $d_{H}(P,Q) = \left| \ln\left(\frac{4}{2}\right) \right| = \left| \ln(2) \right| = \left| \ln(2) \right|$ Want: Find CEAB where $d_{H}(A,C) = \ln(2)$

Let
$$C = (x,y)$$
.
Want to solve:
 $ln(2) = d_H(A,C)$
 $= d_H((0,2),(x,y))$
 $= \left| ln\left(\frac{Q-Q+2}{x-Q+2}\right) \right|$
 $= \left| ln\left(\frac{1}{x+2}\right) \right| = \left| ln\left(\frac{y}{x+2}\right) \right|$
So we need $ln(2) = \frac{1}{n}\left(\frac{y}{x+2}\right)$.
So either
 $ln(2) = ln\left(\frac{y}{x+2}\right)$ or $ln(2) = -ln\left(\frac{y}{x+2}\right)$.

So either

$$z = \frac{y}{x+z} \text{ or } 2 = \frac{x+2}{y}.$$
So either

$$y = 2x+4 \text{ or } y = \frac{1}{2}x+1 \text{ (2)}$$
Now plug there into $\frac{1}{2}$ to get C
 $x^{2} + y^{2} = 4$

 $5x^{2} + 16x + 12 = 0$ () $5x^{2} + 4x - 12 = 0$ (2)

() becomes: (5x+6)(x+z) = 0So, $X = -\frac{6}{5}$ or X = -2 A C = (X,Y)We need C on the $(need \times 70)$ right side of A, $(need \times 70)$ so neither of these x's work.

2) becomes:
$$(5x-6)(x+2) = 0$$

So, $x = \frac{6}{5}$ or $x = -2$.
Only $x = \frac{6}{5}$ is possible.

Now plug
$$C = \left(\frac{6}{5}, y\right)$$
 into $\frac{1}{2}$
to get:
 $\left(\frac{6}{5}\right)^2 + y^2 = 4$
This gives $y^2 = 4 - \frac{36}{25} = \frac{100 - 36}{25} = \frac{64}{25}$
So, $y = \pm \sqrt{\frac{64}{25}} = \pm \frac{8}{5}$
Need $y > 0$ so we get $y = \frac{8}{5}$.
Thus, $C = \left(\frac{6}{5}, \frac{8}{5}\right)$.
We should have $A = \left(\frac{0}{2}\right)$
New $A = \left(\frac{1}{5}, \frac{8}{5}\right)$.

Check: $d_{H}(A,C) = \left[l_{N} \left(\frac{0-0+2}{2} - \frac{1}{6/5} - \frac{1}{$ $= \left| \left| N \left(\frac{\frac{1}{16}}{\frac{16}{5}} \right) \right| = \left| \left| N \left(\frac{8}{16} \right) \right| \right|$ $= \left| \left| n(\frac{1}{2}) \right| = - \left| n(\frac{1}{2}) \right| = \left| n(2) \right|$