$$
\begin{aligned}
& \text { Math } 4300 \\
& 11 / 29 / 23
\end{aligned}
$$

HF 6
(3) Let (p, \mathcal{F}, d) be a metric geometry. Let A, B, C be three non-collinear points.
(a) Prove $\angle A B C=\angle C B A$
(b) Prove

$$
\text { (b) Prove } \begin{aligned}
\triangle A B C=\triangle A C B & =\triangle B A C=\triangle B C A \\
& =\triangle C B A=\triangle C A B
\end{aligned}
$$

(a) We have

$$
\begin{aligned}
\angle A B C & =\overrightarrow{B A} \cup \overrightarrow{B C} \\
& =\overrightarrow{B C} \cup \overrightarrow{B A} \\
& =\angle C B A
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
\triangle A B C & =\overline{A B} \cup \overline{B C} \cup \overline{C A} \\
& =\overline{\overline{B A}} \cup \overline{\overline{C B}} \cup \overline{A C} \\
& =\overline{A C} \cup \overline{C B} \cup \overline{B A} \\
& =\triangle A C B
\end{aligned}
$$

Lemma: If $x \neq y$, then $\overline{x y}=\overline{y x}$ pf: We have

$$
\begin{aligned}
\frac{p f:}{\overline{x y}} & =\{x, y\} \cup\{z \mid \text { where } \\
& x-z-y\} \\
& =\{y, x\} \cup\{z \mid \text { where } y-z-x\} \\
& =\overline{y x}
\end{aligned}
$$

HF 6
(4) Let $(\mathscr{P}, \mathscr{\mathscr { L }}, d)$ be a metric geometry. Let B, Z be points with $B \neq Z$. Prove there exists a point D such that $D \in \overrightarrow{B Z}$ and $B-Z-D$.

$$
\text { Recall; } \overrightarrow{B Z}=\overline{B Z} \cup\{c \mid B-z-c\}
$$

$$
\begin{aligned}
&=\{B, Z\} \cup\{C \mid B-C-Z\} \\
& \cup\{C \mid B-Z-C\}
\end{aligned}
$$

proof: Let $f: \stackrel{G}{B Z} \rightarrow \mathbb{R}$ be a ruler where $f(B)=0$ and $f(z)>0$.
Pick $d \in \mathbb{R}$ with $d>f(z)$.
Since f is onto there exists $D \in \overleftrightarrow{B Z}$ where $f(D)=d$.
Then, $f(B)<f(Z)<f(D)$

$$
\left[\begin{array}{l}
f(B)<f(\tau)<d
\end{array}[0<f(z)<d\right.
$$

So, $B-Z-D$.
This also implies $D E \overrightarrow{B Z}$.

Ho 7
(6) Let $(\mathscr{O}, \mathscr{H}, d)$ be a metric geometry satisfying the PSA. Let l be a line from \mathscr{R}.
Let $P, Q \in \mathcal{O}$ with $P \neq Q$ and $P \notin l$ and $Q \notin l$.
(a) Prove: P, Q are on opposite sides of l iff $\overline{P Q} \cap l \neq \phi$
(b) Prove: P, Q are on the same side of l iff $\overline{P Q} \cap l=\phi$
proof: Since ours geometry satisfies the PSA, there exist two
half planes H_{1} and H_{2} where

- $\theta>l=H_{1} \cup H_{2}$
- $H_{1} \cap H_{2}=\phi$
- H_{1} is convex and H_{2} is convex
- If $A \in H_{1}$ and $B \in H_{2}$, then $\overline{A B} \cap \ell \neq \phi$.

(a)
$(\stackrel{\rightharpoonup}{\Delta})$ Suppose P, Q are on opposite sides of l. Then either

$$
P \in H_{1} \text { and } Q \in H_{2}
$$

or $P \in H_{2}$ and $Q \in H_{1}$.

If $P \in H_{1}$ and $Q \in H_{2}$ by the 4th property of PSA we get

$$
\overline{P Q} \cap l \neq \phi
$$

Same thing for $P \in H_{2}$ and $Q \in H_{1}$.
(r) Suppose $\overline{P Q} \cap l \neq \phi$.
Why are P, Q on opposite sides of l ?
What if P, Q were un the same side of l ?
Suppose $P, Q \in H_{1}$.
Then since H_{1} is convex we would get that $\overline{P Q} \subseteq H_{1}$.
Then $\overline{P Q} \cap l=\phi$ because $H_{1} \cap l=\phi$ by the last property of PSA. Sump idea if $P Q \in H_{2}$.

Thus P, Q are on opposite sides of ℓ 。
(a)

