Math 4300

$$
11127 / 23
$$

Topic 12 - Neutral Geometry
Def: Let (J, \mathcal{L}, d, m) be a protractor geometry.

- Two angles $\angle A B C$ and $\angle D E F$ are congruent, written $\angle A B C \simeq \angle D E F$, if $m(\angle A B C)=m(\angle D E F)$
- Suppose we have a triangle $\triangle A B C$. We write $\angle A$ for $\angle B A C, \angle B$ for $\angle A B C$, and $\angle C$ for $\angle B C A$.
- Suppose $\triangle A B C$ and $\triangle D E F$ are triangles. We write $\triangle A B C \simeq \triangle D E F$ if the following six conditions hold:

$$
\begin{aligned}
& \overline{A B} \simeq \overline{D E}, \quad \overline{B C} \simeq \overline{E F}, \overline{A C} \simeq \overline{D F} \\
& \angle A \simeq \angle D, \angle B \simeq \angle E, \angle C \simeq \angle F
\end{aligned}
$$

- Two triangles $\triangle A B C$ and $\triangle D E F$ are congruent if at least one of the following conditions hold:

$$
\begin{aligned}
& \triangle A B C \simeq \triangle D E F, \quad \triangle A C B \simeq \triangle D E F \\
& \triangle B C A \simeq \triangle D E F, \quad \triangle B A C \simeq \triangle D E F \\
& \triangle C A B \simeq \triangle D E F, \quad \triangle C B A \simeq D E F
\end{aligned}
$$

Def: A protractor geometry (D, \mathcal{Z}, d, m) satisfies the side-angle-side axiom (SAS) if whenever $\triangle A B C$ and $\triangle D E F$ are triangles with

$$
\begin{aligned}
& \text { are triangles with } \overline{B C} \simeq E F \text {, } \\
& \overline{A B} \simeq \overline{D E}, \angle B \simeq \angle E \text {, and }
\end{aligned}
$$

then $\triangle A B C \simeq \triangle D E F$ and are thus congruent.

A protractor geometry that satisfies SAS is called a neutral geometry.

Theorem: The Euclidean plane and the Hyperbolic plane are both neutral geometries.
proof: See Millman/Parker.

Ex: There is a protractor geometry called the taxicab plane that doesn't satisfy SAS. See Millman/Parker page 126-127.

Def: Let $\triangle A B C$ be a triangle in a neutral geometry. $\triangle A B C$ is isosceles if at least two sides are congruent.
$\triangle A B C$ is culled equilateral if all three sides are congruent.

Theorem (Euclid) Let $\triangle A B C$ be an isosceles triangle in a neutral geometry.
Suppose $\overline{A B} \simeq \overline{A C}$.
Then, $\angle B \simeq \angle C$.

proof: Think of the same triangle twice but one flipped over like this:

We have that

$$
\begin{aligned}
& \text { We have that } \\
& \overline{A B} \simeq \overline{A C}, \angle A \simeq \angle A, \overline{A C} \simeq \overline{A B}
\end{aligned}
$$

$B y S A S$ we get $\triangle B A C \simeq \triangle C A B$.
Then, $\angle B \simeq \angle C$.

Def: Let $G=(\partial, 2, d, m)$ be a protractor geometry.
(i) G satisfies angle-side-angle (ASA) if given any two triangles $\triangle A B C$ and $\triangle D E F$ with
$\triangle A B C$ and $A B \sim D E$, and $\angle B \simeq \angle E$
then $\triangle A B C \simeq \triangle D E F$

(ii) G satisfies side-anyle-angle (SAA) it given any two
triangles $\triangle A B C$ and $\triangle D E F$ with $\overline{A B} \simeq \overline{D E}, \angle B \simeq \angle E$, and $\angle C \simeq F$,
then $\triangle A B C \simeq \triangle D E F$

(iii) G satisfies side-side-side (SSS) if given any two triangles $\triangle A B C$ and $\triangle D E F$ with $\overline{A B} \simeq \overline{D E}, \overline{B C} \simeq \overline{E F}$, and $\overline{C A} \simeq \overline{F D}$, then $\triangle A B C \simeq \triangle D E F$.

Theorem: Let $G=\left(D^{2}, \mathscr{2}, d, m\right)$ be a neutral geometry.
Then G satisfies ASA, SAA, and SSS.
proof: We will prove ASA. See Millman/Parker for other two.
Suppose we have two triangles
$\triangle A B C$ and $\triangle D E F$ with $\angle A \simeq \angle D, \overline{A B} \simeq \overline{D E}$, and $\angle B \simeq \angle E$

We will show that $\triangle A B C \simeq \triangle D E F$. By the segment construction theorem there exists a unique point $G \in \overrightarrow{D F}$ with $\overline{D G} \simeq \overline{A C}$.

We will show that $\triangle A B C \simeq \triangle D E G$ and then $G=F$ to get $\triangle A B C \simeq \triangle D E F$.
Since $\overline{A B} \simeq \overline{D E}, \angle A \simeq \angle D$,
and $\overline{A C} \simeq \overline{D G}$,
by $S A S$ we get

$$
\triangle A B C \simeq \triangle D E G
$$

Thus, $\angle A B C \simeq \angle D E G$.
But we know also $\angle A B C \simeq \angle D E F$.
Thus, $\angle D E G \simeq \angle D E F$.

Since $G \in \overrightarrow{D F}$ we know G and F lie in the same half-plane determined by $\overleftrightarrow{D E}$.
[Kw 9 \# $1(b)$]
By (\ddot{i}) of angle measure there is a unique ray $\overrightarrow{E F}=\overrightarrow{E G}$ with $m(\angle D E G)=m(\angle D E F)$.

Thus,

$$
\{F\}=\overrightarrow{E F} \cap \overrightarrow{D F}=\overrightarrow{E G} \cap \overrightarrow{D F}=\{G\}
$$

So, $F=G$.
Thus, $\triangle B A C \simeq \triangle E D G \simeq \triangle E D F$.
So, $\triangle A B C \simeq \triangle D E F$.

