Math 4300

$$
11 / 13 / 23
$$

Topic 11-More on angles
Def: Let (g, \mathscr{L}, d, m) be a protractor geometry.

- Two angles are supplementary if their angle sum is 180°.
- Two angles are complementary if their angle sum is 90°
- Two angles $\angle A B C$ and $\angle C B D$ form a linear pair if $A-B-D$.
- Two angles $\angle A B C$ and $\angle A^{\prime} B C^{\prime}$ form a vertical pair if their union is a pair of intersecting lines. Another way to say this is if either
(i) $A-B-A^{\prime}$ and $C-B-C^{\prime}$
or (ii) $A-B-C^{\prime}$ and $C-B-A^{\prime}$

case (i)

case (\ddot{i})

Lemma l: Let (g, z, d, m) be a protractor geometry. Let $\angle A B C$ and $\angle A B D$ be angles.
If C and D lie on the same side of $\overleftrightarrow{A B}$ and $m(\angle A B C)<m(\angle A B D)$, then $C \in \operatorname{int}(\angle A B D)$.

proof: Since C and D lie on the same side of $\overleftrightarrow{A B}$, to show that $C \in$ int $(\angle A B D)$, we just need to show that C and A are on the same

$\binom{$ intersection of above half-planes is }{ int ($\angle A B O 1}$
To do this we rule out the other two cases: $C \in \stackrel{\leftrightarrow}{B D}$, or C and A are on opposite sides of $\stackrel{\rightharpoonup}{B D}$.
case 1: Suppose $C \in \stackrel{\overleftrightarrow{B D}}{ }$.

Why?
We know C and D lie on the same side of $\overleftrightarrow{A B}$.
we know $C \neq B$.
Since $C \in \stackrel{\rightharpoonup}{B D}$ either $C-B-D$, or $B-C-D$ or $C=D$ or $B-D-C$.
If $C-B-D$ then $\overline{C D} \cap \stackrel{\rightharpoonup}{A B} \neq \varnothing$ since $B \in \overrightarrow{C D} \cap \stackrel{\leftrightarrow}{A B}$. Then C and D are on opposite sides of $\overleftrightarrow{A B}$ which isn't the case.

The other 3 cases gives $C \in \overrightarrow{B D}$ and by $H W 5$ problem 9 we get $\overrightarrow{B C}=\overrightarrow{B D}$
This gives $\angle A B C=\angle A B D$ and

$$
m(\angle A B C)=m(\angle A B D)
$$

which is a contradiction.
Case 2: Suppose C and A lie on opposite sides of $\stackrel{\leftrightarrow}{B D}$.

Since by assumption, C and D lie on the

same side of $\overleftrightarrow{A B}$, by
Hew 9 \#2, we get that $D \in \operatorname{int}(\angle A B C)$
Then property (Min)

$$
\begin{aligned}
m(\angle A B D)+m(\angle D B C) & \stackrel{\downarrow}{=} m(\angle A B C) \\
& <m(\angle A B D)
\end{aligned}
$$

Then $m(\angle D B C)<0$.
Contradiction.

Lemma 2 : Let $(\mathcal{P}, \mathcal{Z}, d, m)$ be a protractor geometry.
If $A-B-D$ and $C \in \operatorname{int}(\angle A B E)$ then $E \in \operatorname{int}(\angle C B D)$

proof: Suppose $A-B-D$ and $C \in$ int $(\angle A B E)$.
Since $C \in \operatorname{int}(\angle A B E)$ we know that C and E are on the same side of $\overleftrightarrow{A B}=\stackrel{G}{B D}$

By the crossbar theorem,

Thus A and E are un opposite sides of $\stackrel{B C}{ }$.
Since $A-B-D$ we know $\frac{\overline{A D} \cap \stackrel{\leftrightarrow}{B C} \neq \phi}{\text { is in here }}$
So A and D are on opposite
sides of $\overleftrightarrow{B C}$.
by (1) and (2) we get E and 10 are on the same $(* *)$ side of $\stackrel{\rightharpoonup}{B C}$. (How $7 \# 7$)
(*) and $(* *)$ give $E \in \operatorname{int}(\angle C B D)$

