Math 4300

$$
11 / 1 / 23
$$

Let's now define an angle measure in the hyperbolic plane.
We need to define tangent vectors to do this.
measuring $\angle A B C$

How to make the tangent vector
Let $A=\left(x_{a}, y_{a}\right)$ and $B=\left(x_{b}, y_{b}\right)$ be in the hyperbolic plane.
We want to define a tangent vector to B on the ray $\overrightarrow{B A}$.
case 1: Suppose A and B lie on a vertical line, so $X_{a}=X_{b}$. In this case, define the tangent vector to be

$$
\begin{aligned}
T_{B A} & =A-B \\
& =\left(0, y_{b}-y_{a}\right)
\end{aligned}
$$

Case 2: Suppose A and B both lie on L_{r}. Let's use calculus to motivate ouse def.
Differentiate $(x-c)^{2}+y^{2}=r^{2}$ to get $2(x-c)+2 y \frac{d y}{d x}=0$

$$
\text { So, } \frac{d y}{d x}=\frac{c-x}{y}
$$

At B this would be $\frac{d y}{d x}=\frac{c-x_{b}}{y_{b}}$
Both $T_{B A}= \pm\left(y_{b}, c-x_{b}\right)$ both have slope $\frac{c-x_{b}}{y_{b}}$.

Pick $a+$ if A is to the right of B Pick a - if A is to the left of B.

Summary: $A=\left(x_{a}, y_{a}\right), B=\left(x_{b}, y_{b}\right)$
Define:

Def: Let A, B, C be non-collinear points in the hyperbolic plane $\mathscr{H}=\left(H H_{1} \mathscr{Z}_{H}, d_{H}\right)$. The hyperbolic measure m_{H} on $\angle A B C$ is defined as

$$
m_{H}(\angle A B C)=\cos ^{-1}\left(\frac{\left\langle T_{B A}, T_{B C}\right\rangle}{\left\|T_{B A}\right\|\left\|T_{B C}\right\|}\right)
$$

In terms of the Euclidean measure if you let $A^{\prime}=B+T_{B A}$ and $C^{\prime}=B+T_{B C}$ then $m_{H}(\angle A B C)=m_{E}\left(\angle A^{\prime} B C^{\prime}\right)$ hyperbolic Euclidean

Ex:- In the hyperbolic plane find $m_{H}(\angle A B C)$ where

$$
\begin{aligned}
& \text { find } m_{H} \\
& A=(0,1), B=(0,5), C=(3,4) \text {. }
\end{aligned}
$$

A and B lie on L B and C lie on $0 L_{5}$

$$
\begin{aligned}
T_{B A} & =A-B=(0,1-5)=(0,-4) \\
T_{B C}=+\left(y_{b}, C-x_{b}\right) & =(5,0-0) \\
& =(5,0)
\end{aligned}
$$

right of B

$$
\begin{aligned}
& \text { Thus, } \\
& \begin{array}{l}
m_{H}(\angle A B C)=\cos ^{-1}\left(\frac{\left\langle T_{B A}, T_{B C}\right\rangle}{\left\|T_{B A}\right\| \cdot\left\|T_{B C}\right\|}\right) \\
=\cos ^{-1}\left(\frac{\langle(0,-4),(5,0)\rangle}{\|(0,-4)\|\|(5,0)\|}\right) \\
=\cos ^{-1}\left(\frac{0(5)+(-4 \|(0)}{4.5}\right) \\
=\cos ^{-1}(0)=90^{\circ}
\end{array}
\end{aligned}
$$

Thm: m_{H} is an angle measure and so $\mathcal{H}=\left(H \|, \mathcal{L}_{H}, d, m_{H}\right)$ is a proctractor geumetry. pf: Millmanl Parker 5.4.

