$$
\begin{aligned}
& \text { math } 4300 \\
& 10 / 9 / 23
\end{aligned}
$$

WW 1
(9) Let $\left(D^{2}, \mathcal{L}\right)$ be an incidence geometry. Let P be a point.
Prove there exists a line l where $P \notin l$.
proof: Suppose othemire.
That is, suppose P lies on every line in \mathcal{L}.
Since $(\mathscr{D}, \mathcal{Z})$ is an incidence geometry there exists distinct points A, B, C that are non-collinear.
case 1: Suppose $P \in\{A, B, C\}$.
Without loss of generality, assume $P=A$.

By assumption, $P \in \underset{\leftrightarrow}{\leftrightarrow}$
But then $A=P \in \stackrel{\leftrightarrow}{B C}$.
Then, $A, B, C \in \overleftrightarrow{B C}$ contradicting that they are collinens.
Case 2: Suppose $P \notin\{A, B, C\}$.
Claim: Either $P \notin \overrightarrow{A B}$ or
$P \notin \overparen{A C}$, or $P \notin \overparen{B C}$.
pf of claim: We just have to rule out the case where $\underset{\leftrightarrow \leftrightarrow}{P} \in \overleftrightarrow{A B}, P \in \stackrel{P C}{\hookrightarrow}$, and $P \in \overrightarrow{B C}$. Suppose $P \in \overparen{A B}$ and $P \in \overleftrightarrow{A C}$ and $P \in \overleftrightarrow{B C}$.
Note that $A, P \in \stackrel{\leftrightarrow}{A B}$.
Also, $A, P \in \overleftrightarrow{A C}$.
But there is a unique line through A and P. Thus, $\overleftrightarrow{A B}=\overleftrightarrow{A C}$. But then $A, B, C \in \stackrel{A B}{\hookrightarrow}\left(\begin{array}{l}\text { since } \\ \overleftrightarrow{A B}=\stackrel{A C}{ }\end{array}\right.$ which contradicts that A, B, C are non-collinear

By cause 1 and case 2, there has to be a line that P is not on.

HF 1
(10) Let $(\mathcal{P}, \mathcal{X})$ be an incidence geometry. Let P be any point Prove there exists points Q, R where P, Q, R are non-collinear.
proof by contradiction:
Suppose given any two points Q, R we have that P, Q, R are collinear.
Since we have an incidence geometry there must exist distinct points A, B, C that are non-collinear.
case l: Suppose $P=A$.
Then, P, B, C are non-collinenr which contradicts our a ssumption.

Case 2: Suppose $P \neq A$.
By assumption, P, A, B are collinear and hence $P, A, B \in \stackrel{(A B}{ }$.
By assumption, P, A, C are collinear and hence $P, A, C \in \overleftrightarrow{A C}$.
Then, $P, A \in \stackrel{\leftrightarrow}{A B}$ and $P, A \in \stackrel{A C}{ }$.
Since there is a unique line through any $\underset{A B}{\rightarrow} \leftrightarrow$ two distinct points we know $\overrightarrow{A B}=\stackrel{A C}{ }$
But then $A, B, C \in \overrightarrow{A B}$ which contradicts that A, B, C are nou-collinear.

Both cases lead to contradictions, so we ace done.

HW 2 Hyperbolic plane
(7) $P=(2,3), Q=(-1,6)$

Find ruler f on $\stackrel{\rightharpoonup P Q}{P}$ where $f(P)=0$ and $f(Q)>0$
$P \operatorname{lug} P, Q$ into $(x-c)^{2}+y^{2}=r^{2}$.

$$
\begin{gather*}
\begin{array}{c}
(2-c)^{2}+3^{2}=r^{2} \\
(-1-c)^{2}+6^{2}=r^{2}
\end{array} \leftarrow Q \\
4 \\
\begin{array}{c}
c^{2}-4 c+13=r^{2} \\
c^{2}+2 c+37=r^{2} \\
27(1)-(2) \\
-6 c-24=0 \\
c=-4
\end{array} \qquad \begin{array}{l}
\text { plug into (1) to get } \\
r^{2}=(-4)^{2}-4(-4)+13 \\
=16+16+13 \\
\\
=45 \\
=\sqrt{45}=3 \sqrt{5}
\end{array} \tag{1}
\end{gather*}
$$

Thus, $P, Q \in \underbrace{-4 L_{3 \sqrt{5}}}_{c^{L} r}$
The standard ruler for $-4 L_{3 \sqrt{5}}$ is

$$
\begin{aligned}
& f(x, y)=\ln \left(\frac{x-c+r}{y}\right)=\ln \left(\frac{x+4+3 \sqrt{5}}{y}\right) \\
& \begin{aligned}
f(P)=f(2,3) & =\ln \left(\frac{2+4+3 \sqrt{5}}{3}\right) \\
& =\ln \left(\frac{6+3 \sqrt{5}}{3}\right) \approx 1.44 \\
f(Q)=f(-1,6) & =\ln \left(\frac{-1+4+3 \sqrt{5}}{6}\right) \\
& =\ln \left(\frac{3+3 \sqrt{5}}{6}\right) \approx 0.481
\end{aligned}
\end{aligned}
$$

Since $f(Q)<f(P)$ we need to shift and the flip!
Ruler we want

$$
\begin{aligned}
g(x, y) & =\underset{f^{\prime}}{-}(\underbrace{f(x, y)-f(p)}_{\text {ship }}) \\
& =-\left(\ln \left(\frac{x+4+3 \sqrt{5}}{y}\right)-\ln \left(\frac{6+3 \sqrt{5}}{3}\right)\right) \\
& =-\ln \left(\frac{\frac{x+4+3 \sqrt{5}}{y}}{\frac{6+3 \sqrt{5}}{3}}\right) \\
& =\ln \left(\frac{6+3 \sqrt{5}}{3}\right)
\end{aligned}
$$

