Math 4300 10/4/23

Ex: In the hyperbolic plane

$$
\begin{aligned}
& \mathcal{H}=\left(H \|, \mathscr{L}_{H}, d_{H}\right), \text { let } \\
& A=(0,2), B=(0,1), \\
& P=(0,4), Q=(7,3)
\end{aligned}
$$

Find $C \in \overrightarrow{A B}$ so that $\overrightarrow{A C} \simeq \overline{P Q}$

Step 1: We want to calculate $P Q$.
We need $\overleftrightarrow{P Q}$.

$$
d_{H}(P, Q)
$$

Plug $P=(0,4)$ and $Q=(7,3)$
into $(x-c)^{2}+y^{2}=r^{2}$.
We get

$$
\begin{gathered}
\begin{array}{c}
(0-c)^{2}+(4)^{2}=r^{2} \\
(7-c)^{2}+(3)^{2}=r^{2}
\end{array} \leftarrow\left[\begin{array}{l}
P \\
Q \\
c^{2}+16=r^{2} \\
c^{2}-14 c+58=r^{2} \\
3 \\
c^{2}+16=r^{2}=c^{2}-14 c+58
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& 16=-14 c+58 \\
& 14 c=42 \\
& c=\frac{42}{14}=3
\end{aligned}
$$

flog $c=3$ into (1) to get

$$
\begin{aligned}
& r^{2}=c^{2}+16=9+16=25 \\
& r=5
\end{aligned}
$$

So, $\stackrel{\leftrightarrow}{P Q}={ }_{c} L_{r}={ }_{3} L_{5}$.
Recall on ${ }_{c} L_{r}$ we have

$$
d_{H}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|\ln \left(\frac{\frac{x_{1}-c+r}{y_{1}}}{\frac{x_{2}-c+\sigma}{y_{2}}}\right)\right|
$$

Then,

Now we need to find $C \in \overrightarrow{A B}$ where $A C=\ln (6)$.

We know $C=(0, y)$.
We need to solve for y in:

$$
\begin{aligned}
\ln (6) & =d_{H}(A, C)=d_{H}((0,2),(0, y)) \\
& =\left|\ln \left(\frac{2}{y}\right)\right|=\ln \left(\frac{2}{y}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{c}
1<\frac{2}{y} \\
\ln \left(\frac{z}{y}\right)>0
\end{array}\right\}
$$

Need $\ln (6)=\ln \left(\frac{z}{y}\right)$.
\ln is $1-1$, so $6=\frac{z}{y}$.
So, $y=\frac{1}{3}$.
Thus, $C=\left(0, \frac{1}{3}\right)$.

$$
-[
$$

Topic 6-Angles and Triangles
Def: Let (op, $\mathcal{L}, d)$ be a metric geometry. Let
A, B, C be noncollinear points from of.
The angle $\angle A B C$ is defined to be $\angle A B C=\overrightarrow{B A} \cup \overrightarrow{B C}$
 (angle in Euclidean) plane

Note: A ray or line can't make an angle since the three points have to be noncollincar. That rules out "o" and "180" angles.

Theorem: Let $(\partial, \mathcal{L}, d)$ be a metric geometry. Let A, B, C, D, E, F be points, where A, B, C are noncollinenr and D, E, F are noncollinear.
If $\angle A B C=\angle D E F$, then $B=E$.
proof: See notes.

Thus, the following def is Well-defined.

Def: Let (D, \mathcal{Z}, d) be a metric yeometry. Let A, B, C be noncollinear points
The vertex of $\angle A B C$ is B.

Def: Let $(\mathcal{O}, \mathcal{Z}, d)$ be a metric geometry. Let A, B, C be nencollinear points.
The triangle $\triangle A B C$ is defined to be

$$
\triangle A B C=\overline{A B} \cup \overline{B C} \cup \overline{C A}
$$

(some Euclidean

$\binom{$ Some hyperbolic }{ triangles }

Theorem: Let $(\mathscr{F}, \mathcal{X}, d)$ be a metric geometry. Let A, B, C be noncollinear points and D, E, F he noncollincar points.
If $\triangle A B C=\triangle D E F$, then $\{A, B, C\}=\{D, E, F\}$
proof: See notes.

This makes the next definition well-defined.

Def: Let $(2, \mathcal{Z}, d)$ be a metric geometry and A, B, C be noncollinear points, The vertices of $\triangle A B C$ are A, B, C.
The sides of $\triangle A B C$ are $\overline{A B}, \overline{A C}$, and $\overline{B C}$.

Note: By HW6 \#3(b),

$$
\begin{aligned}
& \text { Note: } \triangle A B C=\triangle B A C=\triangle C A B= \\
& =\triangle A C B=\triangle B C A=\triangle C B A
\end{aligned}
$$

