Math 4300

$$
10130 / 23
$$

(Topic 9 continued...)
Def: Let (ρ, α, d) be
Parch geometry. Let A, B, C be noncollinear points.
The interior of $\triangle A B C$, written as int $(\triangle A B C)$, is the intersection of three set s :

- the side of $\overleftrightarrow{A B}$ that contains C
- the side of $\stackrel{\rightharpoonup}{A C}$ that contains B
- the side of $\overleftrightarrow{B C}$ that contains A

Theorem: int $(\triangle A B C)$ is convex proof: HW.

Topic 10-Angle Measure
Recall if A, B, C are noncollinear then

$$
\angle A B C=\overrightarrow{B A} \cup \overrightarrow{B C}
$$

Def: Let (ρ, \mathcal{L}, d) be a Pasch geometry. Let $r_{0}>0$ be a real number.
Let $m: A \rightarrow \mathbb{R}$ where A is the set of all angles.
We say that m is an angle measure or protractor based on roy if the following three conditions are true:
(i) If $\angle A B C$ is an angle, then $0<m(\angle A B C)<r_{0}$ (ii) If $\overrightarrow{B C}$ lies on the edge of a halfplane H and θ is
a real number with $0<\theta<r_{0}$, then there exists a unique ray $\overrightarrow{B A}$ where $A \in H$ and $m(\angle A B C)=\theta$.

(iii) If $D \in$ int ($\angle A B C$), then

$$
\underbrace{m(\angle A B D)}_{\alpha}+\underbrace{m(\angle D B C)}_{\beta}=\underbrace{m(\angle A B C)}_{\alpha+\beta}
$$

Note: If $r_{0}=\pi$, then m is called a radian measure. If $r_{0}=180$, then m is called a degree measure.

In this class we will assume $r_{0}=180$ from this point forward.

Def: A proctractor geometry
$(o b, \mathcal{L}, d, m)$ is a Pasch geometry $(y, 2, d)$ together with an angle measure m.

Note: We want to create an angle measure on the Euclidean plane. But to do so we need the inverse cosine function. But the cosine function is usually defined in terms of angles. In Millman/Parker book in section 5,4 they show how to construct the inverse
cosine function without angles. They use an integral. Then they prove all the properties that cosine and inverse cosine have.
We will just assume cosine and inverse cosine exist and satisfy their usual properties.

Recall from Calculus:

$$
\begin{array}{ll}
\vec{b} \\
\vec{a}
\end{array} \quad \cos (\theta)=\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \cdot\|\vec{b}\|}
$$

This gives us an idea to define angle measure

Def: Consider the Euclidean plane $\mathcal{E}=\left(\mathbb{R}^{2}, \mathscr{L}_{E}, d_{E}\right)$.
Let $\angle A B C$ be an angle in ε.
Define the Euclidean angle
measure m_{E} as follows:

$$
m_{E}(\angle A B C)=\cos ^{-1}\left(\frac{\langle A-B, C-B\rangle}{\|A-B\| \cdot\|C-B\|}\right)
$$

Ex: In ε, measure $m(\angle A B C)$ where $A=(0,3), B=(0,1), C=(\sqrt{3}, 2)$.

$$
\begin{aligned}
& m(\angle A B C) \\
& =\cos ^{-1}\left(\frac{\angle A-B, C-B\rangle}{\|A-B\|\|C-B\|}\right) \\
& =\cos ^{-1}\left(\frac{\langle(0,2),(\sqrt{3}, 1)\rangle}{\|(0,2)\| \|(\sqrt{3},)) \|}\right) \\
& =\cos ^{-1}\left(\frac{0+2}{\sqrt{0^{2}+2^{2}} \sqrt{\sqrt{3}^{2}+1^{2}}}\right) \\
& =\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ}
\end{aligned}
$$

Theorem: m_{E} is an angle measure in the Euclidean plane.
Thus, $\mathcal{E}=\left(\mathbb{R}^{2}, \mathcal{L}_{E}, d_{E}, m_{E}\right)$ is a protractor geometry.
Proof: Millman/Parken 5.4

