Math 4300

$$
10 / 23 / 23
$$

Test 2 -
Remove HW 6 from study guide. How 3, 4, 5 on test 2
(Topic 7 continued...)
Idea:

Recall from Calculus that

$$
\begin{aligned}
& \text { Recall from Calculus that } \\
& \cos (\theta)=\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \cdot\|\vec{w}\|}=\frac{\langle\vec{v}, \vec{w}\rangle}{\|\vec{v}\| \cdot\|\vec{\omega}\|}
\end{aligned}
$$

Where θ is the angle between $\stackrel{\rightharpoonup}{v}$ and $\vec{\omega}$
So, $\langle\vec{v}, \vec{\omega}\rangle>0$ iff $\underbrace{-90^{\circ}<\theta<90^{\circ}}_{\cos (\theta)>0}$
And $\langle\vec{v}, \vec{\omega}\rangle<0$ iff $\theta<-90^{\circ}$ or $90^{\circ}<\theta$.

Def: Consider the Euclidean
plane $\varepsilon=\left(\mathbb{R}^{2}, \mathcal{L}_{E}, d_{E}\right)$.
Let $l=\stackrel{P Q}{\overrightarrow{P Q}}$. Define

$$
\begin{aligned}
& \text { Let } l=\stackrel{\rightharpoonup}{P Q} \cdot \text { Define } \\
& H^{+}=\left\{A \in \mathbb{R}^{2} \mid\left\langle A-P,(Q-P)^{\perp}\right\rangle>0\right\} \\
& H^{-}=\left\{A \in \mathbb{R}^{2} \mid\left\langle A-P,(Q-P)^{\perp}\right\rangle\langle 0\}\right.
\end{aligned}
$$

In pic: $A^{+} \in H^{+}$and $A^{-} \in H^{-}$

Theorem: Let $l=\stackrel{\leftrightarrows}{P Q}$ in the Euclidean plane. Let H^{+} and H^{-}be defined as above Then H^{+}and H^{-}are convex.
Proof: Let's prove this for It $^{+}$ The H^{-}case is similar.
Let $A, B \in H^{+}$.
Since $A, B \in H^{+}$we know

$$
\begin{aligned}
\left\langle A-P,(Q-P)^{\perp}\right\rangle>0 \\
\text { and }\left\langle B-P,(Q-P)^{\perp}\right\rangle>0
\end{aligned}
$$

We need to show that $\overline{A B} \subseteq H^{+}$
Let $C \in \overline{A B}, \leftarrow\left[\begin{array}{l}\text { So either } C=A, \\ C=B, \text { or } \\ A-C-B\end{array}\right]$

We need to show $C \in H^{+}$.
If $C=A$ or $C=B$, then $C \in H^{+}$.
So suppose $A-C-B$.
From HW 4 \#10 we know

$$
C=A+t(B-A)
$$

where $0<t<1$.

Thus,

$$
\begin{aligned}
& \left\langle(C-P),(Q-P)^{\perp}\right\rangle \\
= & \langle\underbrace{A+t(B-A)}_{C}-P,(Q-P)^{\perp}\rangle \\
= & \left\langle(1-t) A+B t-P,(Q-P)^{\perp}\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& =\left\langle(1-t)(A-P)+t(B-P),(Q-P)^{\perp}\right\rangle \\
& =\left\langle(1-t)(A-P),(Q-P)^{\perp}\right\rangle \\
& \langle M+N, L\rangle \\
& +\left\langle t(B-P),(Q-P)^{\perp}\right\rangle \\
& =\langle M, L\rangle \\
& +\langle N, L\rangle \\
& \langle c M, N\rangle \\
& =c\langle M, N\rangle \\
& +\underbrace{t}_{t>0} \underbrace{\left\langle B-P,(Q-P)^{\perp}\right\rangle}_{>0 \text { since } B \in H^{+}}
\end{align*}
$$

Thus $\left.\left\langle C-P,(Q-P)^{\perp}\right\rangle\right\rangle 0$ and $C \in H^{+}$.
Thus, $\overline{A B} \subseteq H^{+}$.

Theorem: The Euclidean plane $\mathcal{E}=\left(\mathbb{R}^{2}, \mathcal{L}_{E}, d_{E}\right)$ satisfies the PSA.
proof: Let $P, Q \in \mathbb{R}^{2} \hookrightarrow$ where $P \neq Q$. Let $l=\overleftrightarrow{P Q}$.

$$
\begin{aligned}
& \text { Let } \\
& H^{+}=\left\{A \in \mathbb{R}^{2}\left|\left\langle A-P,(Q-P)^{\perp}\right\rangle\right\rangle 0\right\} \\
& H^{-}=\left\{A \in \mathbb{R}^{2} \mid\left\langle A-P,(Q-P)^{\perp}\right\rangle<0\right\} \\
& \text { Recall } \\
& l=\overleftrightarrow{P Q}=\left\{A \in \mathbb{R}^{2} \mid\left\langle A-P,(Q-P)^{\perp}\right\rangle=0\right\}
\end{aligned}
$$

Thus, \mathbb{R}^{2} breaks up into 3 disjoint sets:

$$
\mathbb{R}^{2}=H^{+} \cup H^{-} \cup l
$$

So,
(i) $\mathbb{R}^{2}-l=H^{+} U H^{-}$
$(\ddot{u}) H^{+} \cap H^{-}=\phi$.
The last theorem showed
(iii) H^{+}and H^{-}are convex.

So we just have to show (iv).
Leet $A \in H^{+}$and $B \in H^{-}$.
We need to show $\overline{A B} \cap l \neq \phi$.
To do this we need to find $t \in \mathbb{R}$ with $0<t<1$
where $A+t(B-A) \in l$
We need to solve

$$
\left\langle\left(A+t(B-A)-P,(Q-P)^{\perp}\right\rangle=0\right.
$$

for $0<t<1 . \quad\langle M+N, L\rangle=\langle M, L\rangle+\langle N, L\rangle$
This equation can be rewritten as

$$
\left\langle A-P,(Q-P)^{\perp}\right\rangle+\left\langle t(B-A),(Q-P)^{\perp}\right\rangle=0
$$ or

$$
\begin{aligned}
& \left\langle A-P,(Q-P)^{\perp}\right\rangle=-\left\langle t(B-A),(Q-P)^{\perp}\right\rangle \\
& \text { or }
\end{aligned}
$$

or

$$
\begin{array}{r}
\langle A-P,(Q-P) \\
\text { or } \\
\left\langle A-P,(Q-P)^{\perp}\right\rangle= \\
\begin{array}{r}
\left\langle-t(B-A),(Q-P)^{\perp}\right\rangle \\
\text { or } \\
\langle A-P,(Q-P)+\perp\rangle=\langle M, N\rangle
\end{array}
\end{array}
$$

We want to solve for t.
Is $\langle A-B,(Q-P) 1\rangle \neq 0 ?_{0}$
Well,

$$
\begin{aligned}
& \left\langle A-B,(Q-P)^{\perp}\right\rangle \\
& =\left\langle(A-P)^{\left.-(B-P),(Q-P)^{\perp}\right\rangle}(X+\mathcal{},(Q)\right. \\
& =\underbrace{\left\langle A-P,(Q-P)^{\perp}\right\rangle}_{>0 \text { since } A \in H^{+}}-\underbrace{\left\langle B-P,(Q-P)^{\perp}\right\rangle}_{\substack{\left\langle 0 \text { since } \\
B \in H^{-}\right.}} \\
& \rangle 0 .
\end{aligned}
$$

Thus in $(*)$ we get

$$
t=\frac{\left\langle A-P,(Q-P)^{+}\right\rangle}{\left\langle A-B,(Q-P)^{\perp}\right\rangle}(* * *)
$$

So, $t\rangle 0$ since $\left.\left\langle A-P,(Q-P)^{\perp}\right\rangle\right\rangle 0$ and $\left.\left\langle A-B,(Q-P)^{\perp}\right\rangle\right\rangle 0$.
Is $t<1$?

Yes because $\left(*^{*}\right)$ says that $\left.\left\langle A-B,(Q-P)^{\perp}\right\rangle\right\rangle\left\langle A-P,(Q-P)^{\perp}\right\rangle$ So the above t works!
Thus, $\overline{A B} \cap l \neq \phi$.

Theorem: The hyperbolic $\overline{\text { plane } \mathcal{J}}=\left(H \|, \mathcal{L}_{H}, d_{H}\right)$ satisfies PSA.
proof: See Millman/Parker page 73

