Math 4300

$$
10 / 2 / 23
$$

Plan

$$
\begin{array}{|c|cc|}
\hline 10 / 2-T_{\text {pic }} 5 & 10 / 4-\text { Topic } 5 / 6 \\
\hline 10 / 9 \begin{array}{l}
\text { He } \\
\text { Review }
\end{array} & 10 / 11 & \text { Test 1 } \\
\hline
\end{array}
$$

On test put

$$
f(x, y)=\ln \left(\frac{x-c+r}{y}\right)
$$

Theorem: Let $(\mathscr{P}, \mathscr{Z}, d)$ be a metric geometry. Let $A, B \in D$ with $A \neq B$.
Then there exists a ruler $f: \overleftrightarrow{A B} \rightarrow \mathbb{R}$ where

$$
\overrightarrow{A B}=\{x \in \overleftrightarrow{A B} \mid f(x) \geqslant 0\}
$$

One such ruler is one where $f(A)=0$ and $f(B)>0$

proof: By a previous theorem there exists a ruler $f: \overleftrightarrow{A B} \rightarrow \mathbb{R}$ where $f(A)=0$ and $f(B)>0$.
Claim: $\overrightarrow{A B}=\{x \in \overleftrightarrow{A B} \mid f(x) \geqslant 0\}$
$E]:$ Let $X \in \overrightarrow{A B}$.
Then, $X \in \stackrel{\leftrightarrow}{A B}$ because $\overrightarrow{A B} \subseteq \stackrel{\leftrightarrow}{A B}$ We need to show that $f(x) \geqslant 0$.
Suppose instead that $f(X)<0$.
Then, $f(X)<\underbrace{f(A)}_{O}<f(B)$.
Thus, $X-A-B$.
But $\overrightarrow{A B}=\left\{C \in g^{g} \left\lvert\, \begin{array}{l}C=A \text { or } A-C-B \\ \text { or } C=B \text { or } A-B-C\end{array}\right.\right\}$ and Hu \#4 says one and only one of the following can be true for X :

$$
\underbrace{X_{X \in A-B} \text { or } \begin{array}{l}
X=A \text { or } A-X-B \text { or } \\
X=B \text { or } A-B-X
\end{array}}_{X \notin \overrightarrow{A B}}
$$

So, $x-A-B$ implies $x \notin \overrightarrow{A B}$ which is a contradiction.
Thus, $f(x) \geqslant 0$
So, $x \in\{c \in P \mid f(c) \geqslant 0\}$.
\sum ? Let $X \in\{c \in \partial \mid f(c) \geqslant 0\}$
We need to show $X \in \overrightarrow{A B}$.
We have $f(x) \geqslant 0$.
If $f(x)=0$, then since f is $1-1$ and $f(A)=0$ we have that
$x=A$ which implies $x \in \overrightarrow{A B}$.
If $\underbrace{0}_{f(A)}<f(X)<f(B)$, then
$A-X-B$ and so $X \in \overrightarrow{A B}$.
If $f(x)=f(B)$, then since f is $1-1$ we have that $X=B$ and so $x \in \overrightarrow{A B}$.
If $\underset{f(A)}{0}<f(B)<f(x)$, then $A-B-x$ and so $x \in \overrightarrow{A B}$. That's all the cares, so $X \in \overrightarrow{A B}$.

Ex: Consider $L_{m, b}=L_{1,10}$

Standard coles: $f(x, y)=\sqrt{2} x$

$$
f(A)=0, f(B)=-3 \sqrt{2}<0
$$

set: $g(X)=-f(X)$
Then, $g(A)=0, g(B)=3 \sqrt{2}>0$

Def: Let (σ, \mathcal{L}, d) be a metric geometry.
Let $A, B, C, D \in O$ with $A \neq B$ and $C \neq D$.
We say that the line segments $\overline{A B}$ and $\overline{C D}$ are congruent, and write $\overline{A B} \simeq \overline{C D}$, if

$$
A B=C D .
$$

recall this
means $d(A, B)=d(C, D)$ ie the length of $\overline{A B}$ equals the length of $\overline{C D}$.

Theorem: (Segment construction Theasem) Let $(2, \mathcal{L}, d)$ be a metric geometry. Let $A, B, P, Q \in \mathscr{D}$ with $A \neq B$ and $P \neq Q$.
Consider the ray $\overrightarrow{A B}$ and the line segment $\overline{P Q}$.
There exists a unique point $C \in \overrightarrow{A B}$ such that $\overline{A C} \simeq \overline{P Q}$

Proof: Let $f: \stackrel{\rightharpoonup}{A B} \rightarrow \mathbb{R}$ be
a ruler where $f(A)=0$ and $f(B)>0$. By the previous theorem

$$
\overrightarrow{A B}=\{x \in \stackrel{\rightharpoonup}{A B} \mid f(x) \geqslant 0\}
$$

Let $r=P Q . \varangle r=d(P, Q)$
set $C=f^{-1}(r)$

$$
r=P Q
$$

Then,

$$
\begin{aligned}
A C & =d(A, C) \\
& =|f(A)-f(C)| \\
& =|0-r| \\
& =|r| \\
& =r \\
& =P Q
\end{aligned}
$$

So, $\overline{A C} \simeq \overline{P Q}$
Why is C unique?
Suppose there was another point $C^{\prime} \in \overrightarrow{A B}$ with $\overline{A C^{\prime}} \simeq \overline{P Q}$.

Since $C^{\prime} \in \overrightarrow{A B}$ we know $f\left(c^{\prime}\right) \geqslant 0$.
Then,

$$
\begin{aligned}
& f\left(C^{\prime}\right)=f\left(C^{\prime}\right)-f(A) \\
&=\left|f\left(C^{\prime}\right)-f(A)\right| \\
& \begin{array}{l}
\text { since } \\
f(A)=0
\end{array} \\
&=d\left(C^{\prime}, A\right) \\
& f\left(C^{\prime}\right) \geqslant 0=f(A)
\end{aligned}
$$

$$
\begin{aligned}
f \text { is aculec } & =d\left(A, C^{\prime}\right) \\
& =A C^{\prime} \\
& =P Q \\
& =r \\
& =f(c)
\end{aligned}
$$

Since f is $1-1$ and $f\left(c^{\prime}\right)=f(c)$ we get $C=C^{\prime}$,
So, C is the unique point on $\overrightarrow{A B}$ where $\overline{A C} \simeq \overline{P Q}$.

