$$
\begin{aligned}
& \text { Math } 4300 \\
& 10 / 18123
\end{aligned}
$$

Ex: (Euclidean plane)

$A, C \in H_{1}$, so $A_{1} C$ are on the same side of l.
$A \in H_{1}$ and $B \in H_{2}$ so A, B ace un opposite sides of ℓ.

Three theorems from HW 7
Theorem: Let (p, \mathcal{L}, d) be a metric geometry that satisfies PSA. Let $\ell \in \mathcal{Z}$ be a line. Let $P, Q \in O$ with $P \notin l$ and $Q \notin l$. Then:
(i) P and Q are on opposite sides of l if $\overline{P Q} \cap \ell \neq \phi$
(ii) P and Q are un the same side of l ifs $\overline{P Q} \cap l=\phi$
Proof: HF 7 \# 6

Theorem: Let (D, \mathscr{L}, d) be a metric geometry that satisfies $P S A$. Let $P, Q, R \in D^{\circ}$ and $l \in \mathcal{L}$.
If P and Q are on opposite sides of l and Q and R are on opposite sides of l, then P and R are on the same side of l.
proof:

Theorem: Let (∂, ∞, d) be a metric geometry that satisfies $P S A$. Let $P, Q, R \in g$ and $l \in \mathcal{Z}$.
If P and Q are on opposite sides of l and Q and R are on the same side of l,
then P and R are on opposite sides of l.
proof:
HF 7
\#8

Our next goal is to show that the Euclidean plane satisfies the PSA axioms.

Def: If $A=(x, y) \in \mathbb{R}^{2}$, then define $A^{\perp}=(-y, x)$ A^{+}is read "A perp".

Theorem:
(i) If $X \in \mathbb{R}^{2}$, then $\left\langle X, X^{+}\right\rangle=0$ (ii) Let $X, Z \in \mathbb{R}^{2}$ and $X \neq(0,0)$. If $\left\langle z, X^{\perp}\right\rangle=0$, then $z=t X$ for some $t \in \mathbb{R}$.
proof:
(i) Let $X=(a, b)$
Then,

$$
\begin{aligned}
& \text { Then, } \\
&\left\langle x, x^{\perp}\right\rangle=\langle(a, b),(-b, a)\rangle \\
&=(a)(-b)+(b)(a)=0
\end{aligned}
$$

(ii) Let $X=(a, b) \neq(0,0)$ and $z=(c, d)$.

Suppose $\left\langle z, X^{+}\right\rangle=0$.
Then, $0=\left\langle z, x^{\perp}\right\rangle=\langle(c, d),(-b, a)\rangle$

$$
=-c b+d a
$$

So, $a d-b c=0$. (*)
Since $X=(a, b) \neq(0,0)$, either $a \neq 0$ or $b \neq 0$.
case 1: Suppose $a \neq 0$.
Then from $(*)$ we get $d=\frac{b c}{a}$.
Thus,

$$
\begin{aligned}
Z=(c, d) & =\left(c, \frac{b c}{a}\right)=\frac{c}{a} \cdot(a, b) \\
& =\frac{c}{a} \cdot X=t X
\end{aligned}
$$

where $t=\frac{c}{a}$.
case 2: Suppose $b \neq 0$.
Then from (*) we get $c=\frac{a d}{b}$.
Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& \begin{aligned}
Z=(c, d) & =\left(\frac{a d}{b}, d\right)=\frac{d}{b} \cdot(a, b) \\
& =\frac{d}{b} \cdot X=t X
\end{aligned}
\end{aligned}
$$

where $t=\frac{d}{b}$.
In either case, $Z=t X$ for some $t \in \mathbb{R}$.

Theorem: Consider the Euclidean plane $\mathcal{E}=\left(\mathbb{R}^{2}, \mathcal{L}_{E}, d_{E}\right)$.
Let $P, Q \in \mathbb{R}^{2}$ where $P \neq Q$.
Then

$$
\stackrel{\text { Then }}{\stackrel{(Q Q}{\leftrightarrows}}=\left\{A \in \mathbb{R}^{2} \mid\left\langle A-P,(Q-P)^{\perp}\right\rangle=0\right\}
$$

Idea:

proof:
$\subseteq \subseteq$: Let $A \in \overleftrightarrow{P Q}$.
Then from Topic 3 we have

$$
A=P+t(Q-P)
$$

where $t \in \mathbb{R}$.
Then,

$$
\begin{aligned}
& \left\langle(A-P),(Q-P)^{\perp}\right\rangle \\
& \stackrel{\sqrt{2}}{=}\left\langle t(Q-P),(Q-P)^{\perp}\right\rangle \\
& \quad=t\left\langle(Q-P),(Q-P)^{\perp}\right\rangle \\
& \left\langle\begin{array}{l}
=t a, b\rangle \\
=t\langle a, b\rangle \\
\text { Previous }+ \text { hm }
\end{array}\right.
\end{aligned}
$$

Thus,

$$
\stackrel{\leftrightarrow}{P Q} \subseteq\left\{A \in \mathbb{R}^{2} \mid\left\langle(A-P),(Q-P)^{\perp}\right\rangle=0\right\} .
$$

\geq : Now let $A \in \mathbb{R}^{2}$ with $\left\langle(A-P),(Q-P)^{\perp}\right\rangle=0$.

Since $P \neq Q$, we know $Q-P \neq(0,0)$.
So, by the previous theorem

$$
A-P=t(Q-P)
$$

where $t \in \mathbb{R}$.
Then $A=p+t(Q-p)$.
By Topic 3, we get $A \in \stackrel{P Q}{P Q}$.

So,

$$
\begin{aligned}
& \text { Su, } \\
& \left\{A \in \mathbb{R}^{2} \mid\left\langle(A-P),(Q-P)^{1}\right\rangle=0\right\} \subseteq \stackrel{\leftrightarrow}{P Q} .
\end{aligned}
$$

