Math 4300 10/16/23

Topic 7 - The plane separation axiom

Def: Let $(\mathcal{D}, \mathcal{L}, d)$ be a metric geometry. Let $S \subseteq \mathcal{P}$.
We say that S is convex if given any two points $P, Q \in S$, then $\overline{P Q} \subseteq S$.

Ex: (Evclideanplane) this pR $\neq S$

Def: We say that a metric geometry $(\mathscr{P}, \mathscr{L}, d)$ satisfies the plane separation axiom (PSA) if for every line $l \in \mathcal{Z}$ there exist two non-empty subsets $H_{1} \subseteq \mathcal{P}$ and $H_{2} \subseteq \mathscr{D}$ such that
(i) $g-l=H_{1} \cup H_{2}$
(ii) $H_{1} \cap H_{2}=\phi$
(iii) H_{1} is convex and H_{2} is convex
(iv) If $P \in H_{1}$ and $Q \in H_{2}$, then $\overline{P Q} \cap l \neq \phi$
Recall $A-B=\{x \mid x \in A$ and $x \notin B\}$ A

The subsets H_{1} and H_{2} are called half-planes determined by l.

Ex: Euclidean plane

Ex: Hyperbolic plane

We will see later that both the Euclidean plane and the Hyperbolic plane satisfy the plane separation axiom (PSA). For now we prove some general results.

Theorem ($\begin{aligned} & \text { The half-planes determined } \\ & \text { by } \& \text { are unique }\end{aligned}$
Let (J, \mathscr{Z}, d) be a metric geometry that satisfies the PSA. Let $l \in \mathcal{L}$.
If H_{1}, H_{2} satisfy $(i)-(i w)$ of the PSA for l and H_{1}^{\prime}, H_{2}^{\prime} satisfy (i) - (iv) of the PSA for l,
then either $H_{1}=H_{1}^{\prime}$ and $H_{2}=H_{2}^{\prime}$ or $H_{1}=H_{2}^{\prime}$ and $H_{2}=H_{1}^{\prime}$.
proof:
Pick some point $P E H_{1}$.
By (i) of PSA we know $P \notin l$.
Since H_{1}^{\prime} and H_{2}^{\prime} also satisfy the PSA axioms we have either $P \in H_{1}^{\prime}$ or $P \in H_{2}^{\prime}$.
Let's assume $P \in H_{1}^{\prime}$.
[The case $P \in H_{2}^{\prime}$ is similar.] \leftarrow Would give, $H_{1}=H_{2}^{\prime}$
Now we will show that $H_{2}=H_{1}^{\prime}$

$$
H_{1}=H_{1}^{\prime} \text { and } H_{2}=H_{2}^{\prime} \text {. }
$$

We will first show $H_{1}=H_{1}^{\prime}$ by showing $H_{1} \subseteq H_{1}^{\prime}$ and $H_{1}^{\prime} \subseteq H_{1}$.
$H_{1} \subseteq H_{1}^{\prime}:$ Let $Q \in H_{1}$.
If $Q=P$, then $Q \in H_{1}^{\prime}$.
So, suppose $Q \neq P$.
We need to show that $Q \in H_{1}^{\prime}$.
Suppose instead that $Q \notin H_{1}^{\prime}$.
Since $Q \in H_{1}$ we know $Q \notin l$.
So since $Q \notin H_{1}^{\prime}$ we must have $Q \in H_{2}^{\prime}$.
Since $P \in H_{1}^{\prime}$ and $Q \in H_{2}^{\prime}$ we $H_{1}^{\prime} l$
know $\overline{P Q} \cap \ell \neq \phi$
(from PSA (iv)).
But also $P, Q \in H_{1}$
and H_{1} is convex,
thus $\overline{P Q} \subseteq H_{1}$
which means $\overline{P Q \cap l}=\phi$.
Contradiction
Thus, $Q \in H_{1}^{\prime}$.
So, $H_{1} \subseteq H_{1}^{\prime}$.
A similar argument shows $H_{1}^{\prime} \subseteq H_{1}$, ($\left.\begin{array}{c}\text { Try } \\ \text { it. }\end{array}\right)$
So, $H_{1}=H_{1}^{\prime}$.
Then,

$$
\begin{aligned}
& H_{2}=\left(g^{2}-l\right)-H_{1} \\
& =(\partial-l)-H_{1}^{\prime}=H_{2}^{\prime}
\end{aligned}
$$

$H_{1}=H_{1}^{\prime}$ Thus, $H_{1}=H_{1}^{\prime}$ and $H_{2}=H_{2}^{\prime}$.

Def: Let (g, \mathcal{L}, d) be a metric geometry that satisfies the PSA. Let $l \in \mathcal{L}$ and H_{1}, H_{2} be the half-planes determined by l. Let $P, Q \in \mathcal{O}$.
(i) We say that P and Q lie on the same side of l if either $P, Q \in H_{1}$ or $P, Q \in H_{2}$.
(ii) we say that P and Q lie on opposite sides of ℓ
\qquad if either
$P \in H_{1}$ and $Q \in H_{2}$
or $P \in H_{2}$ and $Q \in H_{1}$

(iii) If $P \in H_{1}$ then we say that H_{1} is the side of l that contains P.

