Math 4300 10/16/23

Topic 7 - The plane reparation axium

Pef: Let (P, Z, d) be a metric geometry. Let S = P. We say that S is <u>convex</u> if given any two points P,QES, then $PQ \subseteq S$.

Ex: (Evclidean plane) this pats S ABES CONUEX Not LUNJEX

Def: We say that a metric geometry (P, Z, d) satisfier the plane separation axiom (PSA) if for every line LEZ there exist two non-empty subsets $H_1 \subseteq \mathcal{P}$ and $H_2 \subseteq \mathcal{P}$ such that X $(i) \mathcal{P} - l = H_1 U H_2$ (i) $H_1 \cap H_2 = \phi$ (iii) $H_1 \cap H_2 = \phi$ (iiii) H_1 is convex and H_2 is convex (iv) IF PEH, and QEH₂, Pa = Qthen $PQ \cap Q \neq \phi$ then PQN2+ \$ $A-B=Z \times [X \in A and X \notin B]$ Kecall A,-B/B

The subsets H, and Hz are called hulf-planes determined by l.

Theorem (The half-planes determined) by l are unique Let (P, Z, d) be a metric satisfies the PSA. Geometry that Let lEX. If Hi, Hz satisfy (i)-(iw) of the PSA for l and Hi, Hz satisfy (i) - (iv) of the PSA for l, then either HI=H, and Hz=H2 or $H_1 = H_2$ and $H_2 = H_1'$.

Proof: Pick some point PEH,. P∉ J. we know By (i) of PSA Since Hi and Hi 1 J also satisfy the PSA axioms we have either PEH, or PEH2. Let's assume PEH . Would give Hi=Hz [The case PEHZ is similar.] & $H_2 = H_1'$ Now we will show that $H_1 = H_1'$ and $H_2 = H_2'$.

We will first show $H_1 = H_1'$ by showing H, E H; and H; E H,. $|H_1 \subseteq H_1/$ ° Let $Q \in H_1$. If Q=P, then QEH . So, suppose Q=P. We need to show that QEH ... Suppose instead that QEH . Since QEH, we know QEl. So since QEH! We must have QEH2. Since PEH, and QEH2 we H, l know PQNL = \$ H_{2} G But also P, QEH,

and
$$H_1$$
 is convex,
thus $PA \subseteq H_1$,
which means $PA \cap I = \phi$.
Contradiction
Thus, $Q \in H_1'$.
So, $H_1 \subseteq H_1'$.
A similar argument shows $H_1' \subseteq H_1$, $\binom{Try}{it.}$
So, $H_1 = H_1'$.
Then,
 $H_2 = (P-I) - H_1$
 $\begin{pmatrix} f = f = f_1 \\ f = f_1 \\ f = f_1' \\ f =$

(

Def: Let (P, Z, d) be a metric geometry that satisfies the PSA. Let LEZ and Hi, Hz be the half-planes determined by Q. X Let P,QEP. H₁ P Q (i) We say that P and Q lie on the same side of l if either P,QEH, or P,QEH2. (ii) we say that P and Q lie on <u>opposite sider of l</u> HL H2 Po oQ if either PEH, and QEH2 or PEHz and QEH, (iii) IF PEH, then we say that H, is the side of I that contains P.