Math 3450 - Test 2

Name: Solutions

Score	
1	
2	
3	
4	
5	
Т	

- 1. [16 points 4 each] Fill in the rest of the definition.
 - (a) Let A and B be sets and $f: A \to B$. We say that f is one-to-one if

for every an, aze A the following is true:

 \Rightarrow If $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$

could also have: If f(a,)=f(az), then a,=az.

(b) Let A and B be sets and $f: A \to B$. We say that f is onto if

range (f)=B) or for every b ∈ B there exists a ∈ A with f(al=b

(c) Let A and B be sets and $f: A \to B$. Let $X \subseteq A$. We define the image of X under f to be

$$f(X) = \left\{ f(x) \mid x \in X \right\}$$

(d) Let A and B be sets and $f:A\to B$. Let $Y\subseteq B$. We define the inverse image of Y under f to be

$$f^{-1}(Y) = \left\{ a \in A \mid f(a) \in Y \right\}$$

- 2. [10 points 5 each] Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2 2$.
 - (a) Compute f([0,1]).
 - (b) Compute $f^{-1}([-3, 0])$.

3. [20 points - 5 each] Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ and $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be given by the formulas $f(m,n) = (m+n,n^3)$ and g(m,n) = (2m+1,n).

(a) Compute g(0,1) and also compute $(g \circ f)(1,1)$.

$$g(0,1) = (1,1)$$

 $(g \circ f)(1,1) = g(f(1,1))$
 $= g(z,1) = (5,1)$

(b) Give a formula for $(g \circ f)(m, n)$.

$$(g \circ f)(m,n) = g(f(m,n)) = g(m+n,n^3)$$

= $(2m+2n+1,n^3)$

(c) Prove that g is one-to-one.

Suppose
$$g(m_1,n_1) = g(m_2,n_2)$$
 where $(m_1,n_1)_1(m_2,n_2)$ are in $\mathbb{Z} \times \mathbb{Z}$. Then $(2m_1+1,n_1) = (2m_2+1,n_2)$.
So, $2m_1+1 = 2m_2+1$ and $n_1=n_2$.
Thus, $m_1=m_2$ and $n_1=n_2$.
So, $(m_1,n_1) = (m_2,n_2)$.

(d) Show that g is not onto.

Note that if $(m,n) \in \mathbb{Z} \times \mathbb{Z}$ com then g(m,n) = (2m+1,n). And 2m+1is always odd. So you can never set an even integer in the 1st component of g(m,n).

Ex: $(0,0) \notin range(g)$. Suppose g(m,n)=(0,0), where $(m,n)\in \mathbb{Z}\times\mathbb{Z}$. Then (2m+1,n)=(0,0).

So, 2m+1=0.

Thus, $m = -\frac{1}{2} \notin \mathbb{Z}$, $(n,n) \in \mathbb{Z} \times \mathbb{Z}$ with g(m,n) = (0,0).

Thus, $m = -\frac{1}{2} \notin \mathbb{Z}$, $(n,n) \in \mathbb{Z} \times \mathbb{Z}$ with g(m,n) = (0,0).

Thus, there is no $(m,n) \in \mathbb{Z} \times \mathbb{Z}$.

4. [10 points] Pick ONE of the following. If you do both then I will grade A.

A) Consider the function $\pi_4: \mathbb{Z} \to \mathbb{Z}_4$ given by the formula $\pi_4(x) = \overline{x}$. Let $Y = \{\overline{2}\}$. Prove that $\pi_4^{-1}(Y) = \{4k + 2 \mid k \in \mathbb{Z}\}$.

B) Let $S = \mathbb{N} \times \mathbb{N}$. Define the relation \sim on S where $(a,b) \sim (c,d)$ if and only if a+d=b+c. You can assume that \sim is an equivalence relation, no need to prove it. Define the operation $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(a+c,b+d)}$. Prove that \oplus is well-defined on the set of equivalence classes.

(A) This is similar to the 4, II(d). $Ti_{Y}'(Y) \subseteq \{Y | k \in \mathbb{Z}\}$.

Let $x \in Ti_{Y}'(Y)$.

Then $Ti_{Y}(x) \in Y = \{z\}$.

So, x = z.

Thus, $x = 2 \pmod{4}$.

So, x - 2 = Yk where $k \in \mathbb{Z}$.

So, $x = 2 + Yk \in \{Y | k + 2 \mid k \in \mathbb{Z}\}$. $\{Y | k + 2 \mid k \in \mathbb{Z}\} \subseteq Ti_{Y}'(Y)$ Let $X \in \{Y | k + 2 \mid k \in \mathbb{Z}\}$.

Then $x = Y | k + 2 \mid k \in \mathbb{Z}$.

Then $x = Y | k + 2 \mid k \in \mathbb{Z}$.

- 4. [10 points] Pick \underline{ONE} of the following. If you do both then I will grade A.
- A) Consider the function $\pi_4: \mathbb{Z} \to \mathbb{Z}_4$ given by the formula $\pi_4(x) = \overline{x}$. Let $Y = \{\overline{2}\}$. Prove that $\pi_4^{-1}(Y) = \{4k + 2 \mid k \in \mathbb{Z}\}$.
- B) Let $S = \mathbb{N} \times \mathbb{N}$. Define the relation \sim on S where $(a,b) \sim (c,d)$ if and only if a+d=b+c. You can assume that \sim is an equivalence relation, no need to prove it. Define the operation $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(a+c,b+d)}$. Prove that \oplus is well-defined on the set of equivalence classes.

B) HW 3 #8(e).

- 5. [10 points] Pick \underline{ONE} of the following. If you do both then I will grade A.
- A) Let A and B be sets and $f: A \to B$. Prove that if $W \subseteq A$ and $Z \subseteq A$ then $f(W \cup Z) = f(W) \cup f(Z)$.
- B) Let A, B, and C be sets and $f:A\to B$ and $g:B\to C$. (i) Prove that if f and g are both onto, then $g\circ f$ is onto. (ii) Prove that if f and g are both one-to-one, then $g\circ f$ is one-to-one.

A) HW 4 # 14(a)

B) We proved these in class. See the notes from Weds 10/23