Math 3450 - Test 2
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1.

[16 points - 4 each] Fill in the rest of the definition.
(@) Let A and B be sets and f: A = B. We say that f is one-to-one if
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{b) Let A and B be sets and f: A —» B. We say that f is onto if
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(c) Let Aand Bbesetsand f: A = B. Let X C A. We define the image
of X under f to be

£x) = {fc\(fx)‘ X € X}

(d) Let A and Bbesetsand f: A — B. Let Y C B. We define the inverse

image of Y under f to be
1) = {QG A fla\e \/}




2. [10 points - 5 each] Let f : R — R be given by f(z) = z2 — 2.
(a) Compute f([0,1]).
(b) Compute f~1([-3,0]).

) ¢

y=x=2=Hx

£(Co,n)=

[2-1]

42x-2=Fx)

—

L\k\\\
NNTOUYVYYY

RL\'
ey

> Q—l«_—‘;/‘)])

C—ﬁ,ﬁj




3. [20 points - 5 each] Let f: ZxZ -+ Z xZ and g : ZxZ — Z X Z be
given by the formulas f(m,n) = (m + n,n%) and g(m,n) = (2m +1,n).
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(b) Give a formula for (g o f)(m,n). 7
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(c) Prove that g is one-to-one. '
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(d) Show that g is not onto. -
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4. [10 points] Pick ONE of the following. If you do both then I will grade A.

A) Consider the function mq : Z — Z4 given by the formula m4(z) = Z. Let
Y = {2}. Prove that 7;'(Y) = {4k + 2 | k € Z}.

B) Let S = N x N. Define the relation ~ on S where (a,b) ~ (c,d) if and
only if @ +d = b+ c. You can assume that ~ is an equivalence relation, no
need to prove it. Define the operation (a,b) @ (¢,d) = (a + ¢,b+ d). Prove
that @ is well-defined on the set of equivalence classes.
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4. [10 points] Pick ONE of the following. If you do both then I will grade A.

A) Consider the function 74 : Z — Z4 given by the formula m4(z) = Z. Let
Y = {2}. Prove that n;}(Y) = {4k + 2| k € Z}.

B) Let S = N x N. Define the relation ~ on S where (a,b) ~ (c,d) if and
only if a+d = b+ ¢. You can assume that ~ is an equivalence relation, no
need to prove it. Define the operation (a,b) @ (c,d) = (a +c,b+ d). Prove
that & is well-defined on the set of equivalence classes.
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5. [10 points] Pick ONE of the following. If you do both then I will grade A.

A) Let A and B be sets and f : A — B. Prove that if W C Aand Z C A
then f(W U Z) = f(W) U f(2).

B) Let A, B, and C be sets and f: A — B and g: B — C. (i) Prove that if
f and g are both onto, then go f is onto. (ii) Prove that if f and g are both
one-to-one, then go f is one-to-one.
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