Math 3450 - Homework # 3 Equivalence Relations and Well-Defined Operations

- 1. A set S and a relation \sim on S is given. For each example, check if \sim is (i) reflexive, (ii) symmetric, and/or (iii) transitive. If \sim satisfies the property that you are checking, then prove it. If \sim does not satisfy the property that you are checking, then give an example to show it.
 - (a) $S = \mathbb{R}$ where $a \sim b$ if and only if $a \leq b$.

Solution:

(i) Yes, ~ is reflexive. Proof: Let a ∈ ℝ. Then a ≤ a. So a ~ a.
(ii) No, ~ is not symmetric. Counterexample: 3 ≤ 4, but 4 ≤ 3. That is, 3 ~ 4 but 4 ≠ 3.

(iii) Yes, ~ is transitive. Proof: Let $a, b, c \in \mathbb{R}$ and suppose that $a \sim b$ and $b \sim c$. Then $a \leq b$ and $b \leq c$. So $a \leq c$. Thus $a \sim c$.

(b) $S = \mathbb{R}$ where $a \sim b$ if and only if |a| = |b|.

Solution:

(i) Yes, ~ is reflexive. Proof: Let a ∈ ℝ. Then |a| = |a|. So a ~ a.
(ii) Yes, ~ is symmetric. Proof: Let a, b ∈ ℝ and suppose that a ~ b. Then |a| = |b|. So |b| = |a|. Thus b ~ a.

(iii) Yes, \sim is transitive. Proof: Let $a, b, c \in \mathbb{R}$ and suppose that $a \sim b$ and $b \sim c$. Then |a| = |b| and |b| = |c|. So |a| = |c|. Thus $a \sim c$.

(c) $S = \mathbb{Z}$ where $a \sim b$ if and only if a|b.

Solution:

(i) Yes, \sim is reflexive. Proof: Let $a \in \mathbb{Z}$. Then a(1) = a. Hence a|a. So $a \sim a$.

(ii) No, ~ is not symmetric. Counterexample: 3|6, but $6 \nmid 3$.

(iii) Yes, \sim is transitive. Proof: Let $a, b, c \in \mathbb{Z}$. Suppose that $a \sim b$ and $b \sim c$. Then a|b and b|c. Thus there exists $k, m \in \mathbb{Z}$ such that ak = b and bm = c. Then c = bm = (ak)m = a(km). So a|c. Thus $a \sim c$.

(d) S is the set of subsets of N where $A \sim B$ if and only if $A \subseteq B$. Some examples of elements of S are $\{1, 10, 199\}$, $\{2, 7, 10\}$, and $\{2, 10, 3, 7\}$. Note that $\{2, 7, 10\} \sim \{2, 10, 3, 7\}$

Solution:

(i) Yes, ~ is reflexive. Proof: A ⊆ A for all A ∈ S.
(ii) No, ~ is not symmetric. Counterexample: {3} ⊆ {3,42}, but {3,42} ⊈ {3}.
(iii) Yes, ~ is transitive. Proof: Let A, B, C ∈ S with A ~ B and B ~ C. Then A ⊆ B and B ⊆ C. We want to show that A ⊆ C. Let x ∈ A. Since A ⊆ B, we have that x ∈ B. Since B ⊆ C we have that x ∈ C. So A ⊆ C and thus A ~ C.

- 2. Consider the set $S = \mathbb{R}$ where $x \sim y$ if and only if $x^2 = y^2$.
 - (a) Find all the numbers that are related to x = 1. Repeat this exercise for $x = \sqrt{2}$ and x = 0. Solution:

 $1 \sim 1$ since $1^2 = 1^2$. We also have $1 \sim (-1)$ since $1^2 = (-1)^2$. There are no other elements related to 1.

 $\sqrt{2} \sim \sqrt{2}$ since $(\sqrt{2})^2 = (\sqrt{2})^2$. We also have $\sqrt{2} \sim (-\sqrt{2})$ since $(\sqrt{2})^2 = (-\sqrt{2})^2$. There are no other elements related to $\sqrt{2}$. $0 \sim 0$ since $0^2 = 0^2$. There are no other elements related to 0.

(b) Prove that \sim is an equivalence relation on S.

Solution:

Proof. <u>Reflexive</u>: We know that $x^2 = x^2$ for all real numbers x. Therefore $x \sim x$ for all real numbers x. So \sim is reflexive. <u>Symmetric</u>: Let $x, y \in \mathbb{R}$. Suppose that $x \sim y$. Since $x \sim y$ we have that $x^2 = y^2$. So $y^2 = x^2$. Therefore $y \sim x$. <u>Transitive</u> Let $x, y, z \in \mathbb{R}$. Suppose that $x \sim y$ and $y \sim z$. Since $x \sim y$ we have that $x^2 = y^2$. Since $y \sim z$ we have that $y^2 = z^2$. So $x^2 = y^2 = z^2$. Therefore $x \sim z$.

(c) Draw a number line. Draw a picture of the equivalence class of 1. Repeat this for x = 0, x = √6, x = −3.
Solution: Please draw a picture. (d) Describe the elements of S/\sim . Solution:

If $x \neq 0$, then the equivalence class of x is $\overline{x} = \{-x, x\}$. The equivalence class of 0 is $\overline{0} = \{0\}$.

- 3. Consider the set $S = \mathbb{Z}$ where $x \sim y$ if and only if 2|(x+y).
 - (a) List six numbers that are related to x = 2. Solution:

 $2 \sim (-4) \text{ since } 2|(2 + (-4)).$ $2 \sim (-2) \text{ since } 2|(2 + (-2)).$ $2 \sim (0) \text{ since } 2|(2 + (0)).$ $2 \sim (2) \text{ since } 2|(2 + (2)).$ $2 \sim (4) \text{ since } 2|(2 + (4)).$ $2 \sim (6) \text{ since } 2|(2 + (6)).$

(b) Prove that \sim is an equivalence relation on S.

Proof. <u>Reflexive</u>: Let $x \in \mathbb{Z}$. Since 2|2x we have that 2|(x+x). So $x \sim x$. Symmetric: Let $x, y \in \mathbb{Z}$ and suppose that $x \sim y$. Thus 2|(x+y)|. So 2|(y+x)|. So $y \sim x$. <u>Transitive</u>: Let $x, y, z \in \mathbb{Z}$ and suppose that $x \sim y$ and $y \sim z$. Therefore 2|(x+y) and 2|(y+z). So there exist $k, \ell \in \mathbb{Z}$ such that 2k = x + y and $2\ell = y + z$. Add these equations to get $2k + 2\ell = x + 2y + z$. Subtract 2y from both sides to get $2(k + \ell - y) = x + z$. Note that $k + \ell - y \in \mathbb{Z}$, because $k, \ell, y \in \mathbb{Z}$ and \mathbb{Z} is closed under addition and subtraction. So 2|(x+z). So $x \sim z$.

(c) Draw a picture of the set of integers. Next, circle the numbers that are in the equivalence class of -3.

Solution: Draw a picture and circle these numbers: $\ldots, -7, -5, -3, -1, 1, 3, 5, 7, \ldots$

(d) Describe the elements of S/\sim . Draw a picture of several equivalence classes.

Solution: Draw a picture of the following:

$$\overline{0} = \{\dots, -6, -4, -2, 0, 2, 4, 6, \dots\} = \overline{-2} = \overline{2} = \overline{4} = \overline{-4} = \dots$$

$$\overline{1} = \{\dots, -7, -5, -3, -1, 1, 3, 5, 7, \dots\} = \overline{-1} = \overline{3} = \overline{-3} = \overline{-5} = \dots$$

So S/\sim is equal to $\{\overline{0},\overline{1}\}$. That is, one equivalence class is the set of all odd numbers; the other equivalence class is the set of all even numbers.

4. Show that the operation $\overline{a} \oplus \overline{b} = \overline{a}^2 + \overline{b}^2$ is a well-defined operation for \mathbb{Z}_n . Here \overline{a}^2 means $\overline{a} \cdot \overline{a}$. For example, in \mathbb{Z}_4 we have that

$$\overline{2} \oplus \overline{3} = \overline{2} \cdot \overline{2} + \overline{3} \cdot \overline{3} = \overline{4} + \overline{9} = \overline{1}.$$

Proof. 1) Let $\overline{a}, \overline{b} \in \mathbb{Z}_n$ where $a, b \in \mathbb{Z}$.

Then

$$\overline{a} \oplus \overline{b} = \overline{a}^2 + \overline{b}^2 = \overline{a^2} + \overline{b^2} = \overline{a^2 + b^2}.$$

Since $a, b \in \mathbb{Z}$ we have that $a^2 + b^2 \in \mathbb{Z}$. Therefore, $\overline{a} \oplus \overline{b} = \overline{a^2 + b^2} \in \mathbb{Z}_n$.

So \mathbb{Z}_n is closed under the operation \oplus .

2) Suppose that $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ such that $\overline{a_1} = \overline{a_2}$ and $\overline{b_1} = \overline{b_2}$. We need to show that $\overline{a_1} \oplus \overline{b_1} = \overline{a_2} \oplus \overline{b_2}$.

From class we had a theorem that says that if $\overline{x} = \overline{y}$ and $\overline{w} = \overline{z}$, then $\overline{x} + \overline{w} = \overline{y} + \overline{z}$ and $\overline{x} \cdot \overline{w} = \overline{y} \cdot \overline{z}$.

Repeatedly using the above theorem we get the following.

We have that $\overline{a_1} \cdot \overline{a_1} = \overline{a_2} \cdot \overline{a_2}$ by multiplying the equations $\overline{a_1} = \overline{a_2}$ and $\overline{a_1} = \overline{a_2}$.

Similarly, $\overline{b_1} \cdot \overline{b_1} = \overline{b_2} \cdot \overline{b_2}$ by multiplying the equations $\overline{b_1} = \overline{b_2}$ and $\overline{b_1} = \overline{b_2}$.

Adding the two equations above we get that $\overline{a_1} \cdot \overline{a_1} + \overline{b_1} \cdot \overline{b_1} = \overline{a_2} \cdot \overline{a_2} + \overline{b_2} \cdot \overline{b_2}$. Therefore, $\overline{a_1} \oplus \overline{b_1} = \overline{a_2} \oplus \overline{b_2}$.

Thus \oplus is a well-defined operation on \mathbb{Z}_n .

5. Given two integers a and b, let $\min(a, b)$ denote the minimum (smaller) of a and b. Let n be an integer with $n \ge 2$. Is the operation $\overline{a} \oplus \overline{b} = \min(a, b)$ a well-defined operation on \mathbb{Z}_n ?

Solution: This operation is not well-defined. For example, consider n = 4. In \mathbb{Z}_4 we have that $\overline{0} = \overline{8}$ and $\overline{1} = \overline{5}$. Thus, for the operation to be well-defined we would need $\overline{0} \oplus \overline{1} = \overline{8} \oplus \overline{5}$. However, $\overline{0} \oplus \overline{1} = \overline{\min(0, 1)} = \overline{0}$ and $\overline{8} \oplus \overline{5} = \overline{\min(8, 5)} = \overline{5}$. But $\overline{0} \neq \overline{5}$ in \mathbb{Z}_4 .

- 6. (a) Show that the operation $\frac{a}{b} \oplus \frac{c}{d} = \frac{ad}{bc}$ is not a well-defined operation on \mathbb{Q} . (b) Is the operation well-defined on $\mathbb{Q} \{0\}$?
 - (a) Show that the operation $\frac{a}{b} \oplus \frac{c}{d} = \frac{ad}{bc}$ is not a well-defined operation on \mathbb{Q} .

Solution: We have that $\frac{5}{2}$, $\frac{0}{1} \in \mathbb{Q}$ however $\frac{5}{2} \oplus \frac{0}{1} = \frac{5 \cdot 1}{2 \cdot 0} = \frac{5}{0} \notin \mathbb{Q}$. Hence \mathbb{Q} is not closed under \oplus and the operation is not well-defined.

(b) Is the operation well-defined on Q \ {0}?
Solution: Yes! Here is a proof.

Proof. 1) Let $a, b, c, d \in \mathbb{Z}$ with $a \neq 0, b \neq 0, c \neq 0, d \neq 0$ so that $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q} - \{0\}$. Since $a \neq 0, b \neq 0, c \neq 0, d \neq 0$ we have that $ad \neq 0$ and $bc \neq 0$. Thus $\frac{a}{b} \oplus \frac{c}{d} = \frac{ad}{bc} \in \mathbb{Q} - \{0\}$. Therefore $\mathbb{Q} - \{0\}$ is closed under the operation \oplus . 2) Suppose further that we have $e, f, g, h \in \mathbb{Z}$ with $e \neq 0, f \neq 0, g \neq 0, h \neq 0$ so that $\frac{e}{f}, \frac{g}{h} \in \mathbb{Q} - \{0\}$. Also assume that $\frac{a}{b} = \frac{e}{f}$ and $\frac{c}{d} = \frac{g}{h}$. We want to show that $\frac{a}{b} \oplus \frac{c}{d} = \frac{ad}{bc}$ and $\frac{e}{f} \oplus \frac{g}{h} = \frac{eh}{fg}$. Since $\frac{a}{b} = \frac{e}{f}$ we have that af = be. Since $\frac{c}{d} = \frac{g}{h}$ we have that ch = dg. Multiplying af = be by dg = ch we get afdg = bech. Rearranging we get (ad)(fg) = (bc)(eh). Therefore, $\frac{ad}{bc} = \frac{eh}{fg}$. So $\frac{a}{b} \oplus \frac{c}{d} = \frac{e}{f} \oplus \frac{g}{h}$. Thus, the operation is well-defined.

7. Is the operation $\overline{a} \oplus \overline{b} = \overline{a^b}$ a well-defined operation on \mathbb{Z}_n ?

Solution: There are two issues with this operation.

One issue is as follows. As an example, consider n = 4. In \mathbb{Z}_4 we have that $\overline{1} = \overline{5}$. Thus, for the operation to be well-defined we must have that $\overline{2} \oplus \overline{1} = \overline{2} \oplus \overline{5}$. However, $\overline{2} \oplus \overline{1} = \overline{2^1} = \overline{2}$ and $\overline{2} \oplus \overline{5} = \overline{2^5} = \overline{32} = \overline{0}$. And $\overline{2} \neq \overline{0}$ in \mathbb{Z}_4 .

Another issue is when b is a negative integer. For example, in \mathbb{Z}_4 suppose we want to calculate $\overline{2} \oplus \overline{-1}$. What does this mean? The formula says that it is $\overline{2^{-1}}$. But what is that in \mathbb{Z}_4 ? In fact there is no way to make sense of 1/2 in \mathbb{Z}_4 because there is no multiplicative inverse for $\overline{2}$ in \mathbb{Z}_4 . (Why?) Because there is no $\overline{x} \in \mathbb{Z}_4$ with $\overline{x} \cdot \overline{2} = \overline{1}$. We can check:

$$\overline{0} \cdot \overline{2} = \overline{0} \neq \overline{1}$$

$$\overline{1} \cdot \overline{2} = \overline{2} \neq \overline{1}$$

$$\overline{2} \cdot \overline{2} = \overline{4} = \overline{0} \neq \overline{1}$$

$$\overline{3} \cdot \overline{2} = \overline{6} = \overline{2} \neq \overline{1}$$

Thus there is no way to define $\overline{2^{-1}}$ in \mathbb{Z}_4 .

- 8. (Constructing the integers from the natural numbers) Let $S = \mathbb{N} \times \mathbb{N}$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if a+d = b+c.
 - (a) Is (3,6) ~ (7,10) ?
 Solution: Yes, because 3 + 10 = 6 + 7.
 - (b) Is $(1, 1) \sim (3, 5)$? Solution: No, because $1 + 5 \neq 1 + 3$.

(c) Prove that \sim is an equivalence relation.

Proof. <u>Reflexive</u>: Let $(a, b) \in \mathbb{N} \times \mathbb{N}$. Then a + b = b + a. So $(a, b) \sim (a, b)$. <u>Symmetric</u>: Let $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$. <u>Suppose</u> $(a, b) \sim (c, d)$. We know that a + d = b + c, because $(a, b) \sim (c, d)$. So c + b = d + a. So $(c, d) \sim (a, b)$. <u>Transitive</u>: Let $(a, b), (c, d), (e, f) \in \mathbb{N} \times \mathbb{N}$. Suppose that $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. We know that a + d = b + c and c + f = d + e, because $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. Add these two equations to get a + c + d + f = b + c + d + e. Subtract c + d from both sides to get a + f = b + e.

Therefore, \sim is an equivalence relation, because it is reflexive, symmetric, and transitive.

(d) List five elements from each of the following equivalence classes: $\overline{(1,1)}, \overline{(1,2)}, \overline{(5,12)}$.

Solution: Some possible answers:

 $(2,2), (3,3), (4,4), (5,5), (47,47) \in \overline{(1,1)}.$ $(2,3), (3,4), (4,5), (5,6), (47,48) \in \overline{(1,2)}.$ $(2,9), (3,10), (4,11), (5,12), (47,56) \in \overline{(5,12)}.$

(e) Define the operation $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(a+c,b+d)}$. Prove that \oplus is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes $\overline{(a,b)}$ and $\overline{(c,d)}$ where $(a,b), (c,d) \in \mathbb{N} \times \mathbb{N}$.

Then a + c and b + d are both in \mathbb{N} because \mathbb{N} is closed under addition.

Thus, $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(a+c,b+d)}$ is a valid equivalence class in $\mathbb{N} \times \mathbb{N}/\sim$.

2) Now suppose that $\overline{(a,b)}, \overline{(c,d)}, \overline{(e,f)}, \text{and } \overline{(g,h)}$ are equivalence classes of $\mathbb{N} \times \mathbb{N} / \sim$. Further suppose that $\overline{(a,b)} = \overline{(e,f)}$ and $\overline{(c,d)} = \overline{(g,h)}$. We need to show that $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(e,f)} \oplus \overline{(g,h)}$. We have that a + f = b + e since $\overline{(a,b)} = \overline{(e,f)}$. We also have that c + h = d + g since $\overline{(c,d)} = \overline{(g,h)}$. Adding these two equations gives a + f + c + h = b + e + d + g. Rearranging gives (a + c) + (f + h) = (b + d) + (e + g). Therefore, $\overline{(a + c, b + d)} = \overline{(e + g, f + h)}$. Hence $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(e,f)} \oplus \overline{(g,h)}$.

The above arguments show that \oplus is a well-defined operation on the equivalence classes of $\mathbb{N} \times \mathbb{N} / \sim$.

- 9. (Constructing the rational numbers from the integers) Let $S = \mathbb{Z} \times (\mathbb{Z} \{0\})$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if ad = bc.
 - (a) Is $(1,5) \sim (-3,-15)$? Solution: Yes, because 1(-15) = 5(-3).
 - (b) Is $(-1, 1) \sim (2, 3)$? Solution: No, because $(-1)(3) \neq 1(2)$.
 - (c) Prove that \sim is an equivalence relation.

Proof. <u>Reflexive</u>: Let $(a, b) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Then ab = ba. So $(a, b) \sim (a, b)$. <u>Symmetric</u>: Let $(a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$. <u>Suppose</u> $(a, b) \sim (c, d)$. We know that ad = bc, because $(a, b) \sim (c, d)$. So cb = da. Hence $(c, d) \sim (a, b)$. <u>Transitive</u>: Let $(a, b), (c, d), (e, f) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Note that $d \neq 0$ and $f \neq 0$ since $d, f \in \mathbb{Z} - \{0\}$. Suppose $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. We know that ad = bc and cf = de, because $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. Thus

$$ad = bc = b\left(\frac{de}{f}\right) = \frac{bde}{f}$$

Thus adf = bde. Since $d \neq 0$ we can divide by d to get af = be. So $(a,b) \sim (e,f)$ since af = be.

Therefore, \sim is an equivalence relation, because it is reflexive, symmetric, and transitive.

- (d) <u>List five elements</u> from each of the following equivalence classes: $\overline{(1,1)}, \overline{(0,2)}, \overline{(2,3)}.$

Solution: Some possible answers:

 $(2,2), (3,3), (4,4), (5,5), (47,47) \in (1,1).$ $(0,1), (0,2), (0,-1), (0,-2), (0,-47) \in \overline{(0,2)}.$ $(2,3), (4,6), (6,9), (-2,-3), (-4,-6) \in \overline{(2,3)}.$

(e) Define the operation $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(ad+bc,bd)}$. Prove that \oplus is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes (a, b) and (c, d) where $(a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} - \{0\}).$

Then $ad + bc \in \mathbb{Z}$ because $a, b, c, d \in \mathbb{Z}$ and the integers are closed under addition and multiplication.

Also, since $b, d \in \mathbb{Z} - \{0\}$ we have that $bd \neq 0$ and so $bd \in \mathbb{Z} - \{0\}$. Thus $(ad+bc, bd) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$ and $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(ad+bc,bd)}$ is a valid equivalence class.

2) Now suppose that $\overline{(a,b)}, \overline{(c,d)}, \overline{(x,y)}$, and $\overline{(w,z)}$ are equivalence classes in $\mathbb{Z} \times (\mathbb{Z} - \{0\}) / \sim$.

Further suppose that $\overline{(a,b)} = \overline{(x,y)}$ and $\overline{(c,d)} = \overline{(w,z)}$. We need to show that $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(x,y)} \oplus \overline{(w,z)}$. That is, we need to show that $\overline{(ad + bc,bd)} = \overline{(xz + yw,yz)}$. The above is equivalent to showing that (ad+bc)yz = bd(xz+yw). Let's do this. Since $\overline{(a,b)} = \overline{(x,y)}$ we have that ay = bx. Since $\overline{(c,d)} = \overline{(w,z)}$ we have that cz = dw. Therefore, using the equations ay = bx and cz = dw we get that

$$(ad + bc)yz = adyz + bcyz$$

= $(ay)(dz) + (cz)(by)$
= $(bx)(dz) + (dw)(by)$
= $bd(xz + yw).$

Thus, $\overline{(ad + bc, bd)} = \overline{(xz + yw, yz)}$.

Thus, the operation \oplus is well-defined on the equivalence classes of $\mathbb{Z} \times (\mathbb{Z} - \{0\}) / \sim$.

(f) Define the operation $\overline{(a,b)} \odot \overline{(c,d)} = \overline{(ac,bd)}$. Prove that \odot is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes (a, b) and (c, d) where $(a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} - \{0\}).$

Then $ac \in \mathbb{Z}$ because $a, c \in \mathbb{Z}$ and the integers are closed under multiplication.

Also, since $b, d \in \mathbb{Z} - \{0\}$ we have that $bd \neq 0$ and so $bd \in \mathbb{Z} - \{0\}$. Thus $(ac, bd) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$ and $\overline{(a, b)} \odot \overline{(c, d)} = \overline{(ac, bd)}$ is a valid equivalence class.

2) Now suppose that $\overline{(a,b)}, \overline{(c,d)}, \overline{(x,y)}$, and $\overline{(w,z)}$ are equivalence classes in $\mathbb{Z} \times (\mathbb{Z} - \{0\}) / \sim$. Further suppose that $\overline{(a,b)} = \overline{(x,y)}$ and $\overline{(c,d)} = \overline{(w,z)}$. We need to show that $\overline{(a,b)} \odot \overline{(c,d)} = \overline{(x,y)} \odot \overline{(w,z)}$. That is, we need to show that $\overline{(ac,bd)} = \overline{(xw,yz)}$. The above is equivalent to showing that (ac)(yz) = (bd)(xw). Let's do this. Since $\overline{(a,b)} = \overline{(x,y)}$ we have that ay = bx. Since $\overline{(c,d)} = \overline{(w,z)}$ we have that cz = dw. Therefore, using the equations ay = bx and cz = dw we get that

$$(ac)(yz) = (ay)(cz) = (bx)(dw) = (bd)(xw).$$

Thus, $\overline{(ac, bd)} = \overline{(xw, yz)}$.

Therefore, the operation \odot is well-defined on the equivalence classes of $\mathbb{Z} \times (\mathbb{Z} - \{0\}) / \sim$.

Г		1
		L
L	_	L