Math 3450 - Homework \# 3 Equivalence Relations and Well-Defined Operations

1. A set S and a relation \sim on S is given. For each example, check if \sim is (i) reflexive, (ii) symmetric, and/or (iii) transitive. If \sim satisfies the property that you are checking, then prove it. If \sim does not satisfy the property that you are checking, then give an example to show it.
(a) $S=\mathbb{R}$ where $a \sim b$ if and only if $a \leq b$.

Solution:

(i) Yes, \sim is reflexive. Proof: Let $a \in \mathbb{R}$. Then $a \leq a$. So $a \sim a$.
(ii) No, \sim is not symmetric. Counterexample: $3 \leq 4$, but $4 \not \leq 3$. That is, $3 \sim 4$ but $4 \nsim 3$.
(iii) Yes, \sim is transitive. Proof: Let $a, b, c \in \mathbb{R}$ and suppose that $a \sim b$ and $b \sim c$. Then $a \leq b$ and $b \leq c$. So $a \leq c$. Thus $a \sim c$.
(b) $S=\mathbb{R}$ where $a \sim b$ if and only if $|a|=|b|$.

Solution:

(i) Yes, \sim is reflexive. Proof: Let $a \in \mathbb{R}$. Then $|a|=|a|$. So $a \sim a$.
(ii) Yes, \sim is symmetric. Proof: Let $a, b \in \mathbb{R}$ and suppose that $a \sim b$. Then $|a|=|b|$. So $|b|=|a|$. Thus $b \sim a$.
(iii) Yes, \sim is transitive. Proof: Let $a, b, c \in \mathbb{R}$ and suppose that $a \sim b$ and $b \sim c$. Then $|a|=|b|$ and $|b|=|c|$. So $|a|=|c|$. Thus $a \sim c$.
(c) $S=\mathbb{Z}$ where $a \sim b$ if and only if $a \mid b$.

Solution:

(i) Yes, \sim is reflexive. Proof: Let $a \in \mathbb{Z}$. Then $a(1)=a$. Hence $a \mid a$. So $a \sim a$.
(ii) No, \sim is not symmetric. Counterexample: $3 \mid 6$, but $6 \nmid 3$.
(iii) Yes, \sim is transitive. Proof: Let $a, b, c \in \mathbb{Z}$. Suppose that $a \sim b$ and $b \sim c$. Then $a \mid b$ and $b \mid c$. Thus there exists $k, m \in \mathbb{Z}$ such that $a k=b$ and $b m=c$. Then $c=b m=(a k) m=a(k m)$. So $a \mid c$. Thus $a \sim c$.
(d) S is the set of subsets of \mathbb{N} where $A \sim B$ if and only if $A \subseteq B$. Some examples of elements of S are $\{1,10,199\},\{2,7,10\}$, and $\{2,10,3,7\}$. Note that $\{2,7,10\} \sim\{2,10,3,7\}$

Solution:

(i) Yes, \sim is reflexive. Proof: $A \subseteq A$ for all $A \in S$.
(ii) No, \sim is not symmetric. Counterexample: $\{3\} \subseteq\{3,42\}$, but $\{3,42\} \nsubseteq\{3\}$.
(iii) Yes, \sim is transitive. Proof: Let $A, B, C \in S$ with $A \sim B$ and $B \sim C$. Then $A \subseteq B$ and $B \subseteq C$. We want to show that $A \subseteq C$. Let $x \in A$. Since $A \subseteq B$, we have that $x \in B$. Since $B \subseteq C$ we have that $x \in C$. So $A \subseteq C$ and thus $A \sim C$.
2. Consider the set $S=\mathbb{R}$ where $x \sim y$ if and only if $x^{2}=y^{2}$.
(a) Find all the numbers that are related to $x=1$. Repeat this exercise for $x=\sqrt{2}$ and $x=0$.

Solution:

$1 \sim 1$ since $1^{2}=1^{2}$. We also have $1 \sim(-1)$ since $1^{2}=(-1)^{2}$. There are no other elements related to 1 .
$\sqrt{2} \sim \sqrt{2}$ since $(\sqrt{2})^{2}=(\sqrt{2})^{2}$. We also have $\sqrt{2} \sim(-\sqrt{2})$ since $(\sqrt{2})^{2}=(-\sqrt{2})^{2}$. There are no other elements related to $\sqrt{2}$.
$0 \sim 0$ since $0^{2}=0^{2}$. There are no other elements related to 0 .
(b) Prove that \sim is an equivalence relation on S.

Solution:

Proof. Reflexive: We know that $x^{2}=x^{2}$ for all real numbers x. Therefore $x \sim x$ for all real numbers x. So \sim is reflexive.
Symmetric: Let $x, y \in \mathbb{R}$. Suppose that $x \sim y$.
Since $x \sim y$ we have that $x^{2}=y^{2}$.
So $y^{2}=x^{2}$.
Therefore $y \sim x$.
Transitive Let $x, y, z \in \mathbb{R}$. Suppose that $x \sim y$ and $y \sim z$.
Since $x \sim y$ we have that $x^{2}=y^{2}$.
Since $y \sim z$ we have that $y^{2}=z^{2}$.
So $x^{2}=y^{2}=z^{2}$.
Therefore $x \sim z$.
(c) Draw a number line. Draw a picture of the equivalence class of 1 .

Repeat this for $x=0, x=\sqrt{6}, x=-3$.
Solution: Please draw a picture.
(d) Describe the elements of S / \sim.

Solution:

If $x \neq 0$, then the equivalence class of x is $\bar{x}=\{-x, x\}$. The equivalence class of 0 is $\overline{0}=\{0\}$.
3. Consider the set $S=\mathbb{Z}$ where $x \sim y$ if and only if $2 \mid(x+y)$.
(a) List six numbers that are related to $x=2$.

Solution:

$2 \sim(-4)$ since $2 \mid(2+(-4))$.
$2 \sim(-2)$ since $2 \mid(2+(-2))$.
$2 \sim(0)$ since $2 \mid(2+(0))$.
$2 \sim(2)$ since $2 \mid(2+(2))$.
$2 \sim(4)$ since $2 \mid(2+(4))$.
$2 \sim(6)$ since $2 \mid(2+(6))$.
(b) Prove that \sim is an equivalence relation on S.

Proof. Reflexive: Let $x \in \mathbb{Z}$.
Since $2 \mid 2 x$ we have that $2 \mid(x+x)$.
So $x \sim x$.
Symmetric: Let $x, y \in \mathbb{Z}$ and suppose that $x \sim y$.
Thus $2 \mid(x+y)$.
So $2 \mid(y+x)$.
So $y \sim x$.
Transitive: Let $x, y, z \in \mathbb{Z}$ and suppose that $x \sim y$ and $y \sim z$.
Therefore $2 \mid(x+y)$ and $2 \mid(y+z)$.
So there exist $k, \ell \in \mathbb{Z}$ such that $2 k=x+y$ and $2 \ell=y+z$.
Add these equations to get $2 k+2 \ell=x+2 y+z$.
Subtract $2 y$ from both sides to get $2(k+\ell-y)=x+z$.
Note that $k+\ell-y \in \mathbb{Z}$, because $k, \ell, y \in \mathbb{Z}$ and \mathbb{Z} is closed under addition and subtraction.
So $2 \mid(x+z)$.
So $x \sim z$.
(c) Draw a picture of the set of integers. Next, circle the numbers that are in the equivalence class of -3 .
Solution: Draw a picture and circle these numbers:
$\ldots,-7,-5,-3,-1,1,3,5,7, \ldots$
(d) Describe the elements of S / \sim. Draw a picture of several equivalence classes.
Solution: Draw a picture of the following:

$$
\begin{aligned}
& \overline{0}=\{\ldots,-6,-4,-2,0,2,4,6, \ldots\}=\overline{-2}=\overline{2}=\overline{4}=\overline{-4}=\cdots \\
& \overline{1}=\{\ldots,-7,-5,-3,-1,1,3,5,7, \ldots\}=\overline{-1}=\overline{3}=\overline{-3}=\overline{-5}=\cdots
\end{aligned}
$$

So S / \sim is equal to $\{\overline{0}, \overline{1}\}$. That is, one equivalence class is the set of all odd numbers; the other equivalence class is the set of all even numbers.
4. Show that the operation $\bar{a} \oplus \bar{b}=\bar{a}^{2}+\bar{b}^{2}$ is a well-defined operation for \mathbb{Z}_{n}. Here \bar{a}^{2} means $\bar{a} \cdot \bar{a}$. For example, in \mathbb{Z}_{4} we have that

$$
\overline{2} \oplus \overline{3}=\overline{2} \cdot \overline{2}+\overline{3} \cdot \overline{3}=\overline{4}+\overline{9}=\overline{1}
$$

Proof. 1) Let $\bar{a}, \bar{b} \in \mathbb{Z}_{n}$ where $a, b \in \mathbb{Z}$.
Then

$$
\bar{a} \oplus \bar{b}=\bar{a}^{2}+\bar{b}^{2}=\overline{a^{2}}+\overline{b^{2}}=\overline{a^{2}+b^{2}} .
$$

Since $a, b \in \mathbb{Z}$ we have that $a^{2}+b^{2} \in \mathbb{Z}$.
Therefore, $\bar{a} \oplus \bar{b}=\overline{a^{2}+b^{2}} \in \mathbb{Z}_{n}$.
So \mathbb{Z}_{n} is closed under the operation \oplus.
2) Suppose that $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$ such that $\overline{a_{1}}=\overline{a_{2}}$ and $\overline{b_{1}}=\overline{b_{2}}$. We need to show that $\overline{a_{1}} \oplus \overline{b_{1}}=\overline{a_{2}} \oplus \overline{b_{2}}$.
From class we had a theorem that says that if $\bar{x}=\bar{y}$ and $\bar{w}=\bar{z}$, then $\bar{x}+\bar{w}=\bar{y}+\bar{z}$ and $\bar{x} \cdot \bar{w}=\bar{y} \cdot \bar{z}$.
Repeatedly using the above theorem we get the following.
We have that $\overline{a_{1}} \cdot \overline{a_{1}}=\overline{a_{2}} \cdot \overline{a_{2}}$ by multiplying the equations $\overline{a_{1}}=\overline{a_{2}}$ and $\overline{a_{1}}=\overline{a_{2}}$.
Similarly, $\overline{b_{1}} \cdot \overline{b_{1}}=\overline{b_{2}} \cdot \overline{b_{2}}$ by multiplying the equations $\overline{b_{1}}=\overline{b_{2}}$ and $\overline{b_{1}}=\overline{b_{2}}$.

Adding the two equations above we get that $\overline{a_{1}} \cdot \overline{a_{1}}+\overline{b_{1}} \cdot \overline{b_{1}}=\overline{a_{2}} \cdot \overline{a_{2}}+\overline{b_{2}} \cdot \overline{b_{2}}$. Therefore, $\overline{a_{1}} \oplus \overline{b_{1}}=\overline{a_{2}} \oplus \overline{b_{2}}$.
Thus \oplus is a well-defined operation on \mathbb{Z}_{n}.
5. Given two integers a and b, let $\min (a, b)$ denote the minimum (smaller) $\underline{\text { of } a \text { and } b}$. Let n be an integer with $n \geq 2$. Is the operation $\bar{a} \oplus \bar{b}=$ $\overline{\min (a, b)}$ a well-defined operation on \mathbb{Z}_{n} ?
Solution: This operation is not well-defined. For example, consider $n=4$. In \mathbb{Z}_{4} we have that $\overline{0}=\overline{8}$ and $\overline{1}=\overline{5}$. Thus, for the operation to be well-defined we would need $\overline{0} \oplus \overline{1}=\overline{8} \oplus \overline{5}$. However, $\overline{0} \oplus \overline{1}=$ $\overline{\min (0,1)}=\overline{0}$ and $\overline{8} \oplus \overline{5}=\overline{\min (8,5)}=\overline{5}$. But $\overline{0} \neq \overline{5}$ in \mathbb{Z}_{4}.
6. (a) Show that the operation $\frac{a}{b} \oplus \frac{c}{d}=\frac{a d}{b c}$ is not a well-defined operation on \mathbb{Q}. (b) Is the operation well-defined on $\mathbb{Q}-\{0\}$?
(a) Show that the operation $\frac{a}{b} \oplus \frac{c}{d}=\frac{a d}{b c}$ is not a well-defined operation on \mathbb{Q}.
Solution: We have that $\frac{5}{2}, \frac{0}{1} \in \mathbb{Q}$ however $\frac{5}{2} \oplus \frac{0}{1}=\frac{5 \cdot 1}{2 \cdot 0}=\frac{5}{0} \notin \mathbb{Q}$.
Hence \mathbb{Q} is not closed under \oplus and the operation is not welldefined.
(b) Is the operation well-defined on $\mathbb{Q} \backslash\{0\}$?

Solution: Yes! Here is a proof.
Proof. 1) Let $a, b, c, d \in \mathbb{Z}$ with $a \neq 0, b \neq 0, c \neq 0, d \neq 0$ so that $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}-\{0\}$.
Since $a \neq 0, b \neq 0, c \neq 0, d \neq 0$ we have that $a d \neq 0$ and $b c \neq 0$.
Thus $\frac{a}{b} \oplus \frac{c}{d}=\frac{a d}{b c} \in \mathbb{Q}-\{0\}$.
Therefore $\mathbb{Q}-\{0\}$ is closed under the operation \oplus.
2) Suppose further that we have $e, f, g, h \in \mathbb{Z}$ with $e \neq 0, f \neq$ $0, g \neq 0, h \neq 0$ so that $\frac{e}{f}, \frac{g}{h} \in \mathbb{Q}-\{0\}$.
Also assume that $\frac{a}{b}=\frac{e}{f}$ and $\frac{c}{d}=\frac{g}{h}$.
We want to show that $\frac{a}{b} \oplus \frac{c}{d}=\frac{e}{f} \oplus \frac{g}{h}$.
We have that $\frac{a}{b} \oplus \frac{c}{d}=\frac{a d}{b c}$ and $\frac{e}{f} \oplus \frac{g}{h}=\frac{e h}{f g}$.

Since $\frac{a}{b}=\frac{e}{f}$ we have that $a f=b e$.
Since $\frac{c}{d}=\frac{g}{h}$ we have that $c h=d g$.
Multiplying $a f=b e$ by $d g=c h$ we get $a f d g=b e c h$.
Rearranging we get $(a d)(f g)=(b c)(e h)$.
Therefore, $\frac{a d}{b c}=\frac{e h}{f g}$.
So $\frac{a}{b} \oplus \frac{c}{d}=\frac{e}{f} \oplus \frac{g}{h}$.
Thus, the operation is well-defined.
7. Is the operation $\bar{a} \oplus \bar{b}=\overline{a^{b}}$ a well-defined operation on \mathbb{Z}_{n} ?

Solution: There are two issues with this operation.
One issue is as follows. As an example, consider $n=4$. In \mathbb{Z}_{4} we have that $\overline{1}=\overline{5}$. Thus, for the operation to be well-defined we must have that $\overline{2} \oplus \overline{1}=\overline{2} \oplus \overline{5}$. However, $\overline{2} \oplus \overline{1}=\overline{2^{1}}=\overline{2}$ and $\overline{2} \oplus \overline{5}=\overline{2^{5}}=\overline{32}=\overline{0}$. And $\overline{2} \neq \overline{0}$ in \mathbb{Z}_{4}.
Another issue is when b is a negative integer. For example, in \mathbb{Z}_{4} suppose we want to calculate $\overline{2} \oplus \overline{-1}$. What does this mean? The formula says that it is $\overline{2^{-1}}$. But what is that in \mathbb{Z}_{4} ? In fact there is no way to make sense of $1 / 2$ in \mathbb{Z}_{4} because there is no multiplicative inverse for $\overline{2}$ in \mathbb{Z}_{4}. (Why?) Because there is no $\bar{x} \in \mathbb{Z}_{4}$ with $\bar{x} \cdot \overline{2}=\overline{1}$. We can check:
$\overline{0} \cdot \overline{2}=\overline{0} \neq \overline{1}$
$\overline{1} \cdot \overline{2}=\overline{2} \neq \overline{1}$
$\overline{2} \cdot \overline{2}=\overline{4}=\overline{0} \neq \overline{1}$
$\overline{3} \cdot \overline{2}=\overline{6}=\overline{2} \neq \overline{1}$
Thus there is no way to define $\overline{2^{-1}}$ in \mathbb{Z}_{4}.
8. (Constructing the integers from the natural numbers) Let $S=\mathbb{N} \times \mathbb{N}$. Define the relation \sim on S where $(a, b) \sim(c, d)$ if and only if $a+d=b+c$.
(a) Is $(3,6) \sim(7,10)$?

Solution: Yes, because $3+10=6+7$.
(b) Is $(1,1) \sim(3,5)$?

Solution: No, because $1+5 \neq 1+3$.
(c) Prove that \sim is an equivalence relation.

Proof. Reflexive: Let $(a, b) \in \mathbb{N} \times \mathbb{N}$.
Then $a+b=b+a$.
So $(a, b) \sim(a, b)$.
Symmetric: Let $(a, b),(c, d) \in \mathbb{N} \times \mathbb{N}$.
Suppose $(a, b) \sim(c, d)$.
We know that $a+d=b+c$, because $(a, b) \sim(c, d)$.
So $c+b=d+a$.
So $(c, d) \sim(a, b)$.
Transitive: Let $(a, b),(c, d),(e, f) \in \mathbb{N} \times \mathbb{N}$.
Suppose that $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$.
We know that $a+d=b+c$ and $c+f=d+e$, because $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$.
Add these two equations to get $a+c+d+f=b+c+d+e$.
Subtract $c+d$ from both sides to get $a+f=b+e$.
So $(a, b) \sim(e, f)$.

Therefore, \sim is an equivalence relation, because it is reflexive, symmetric, and transitive.
(d) List five elements from each of the following equivalence classes: $\overline{(1,1)}, \overline{(1,2)}, \overline{(5,12)}$.
Solution: Some possible answers:
$(2,2),(3,3),(4,4),(5,5),(47,47) \in \overline{(1,1)}$.
$(2,3),(3,4),(4,5),(5,6),(47,48) \in \overline{(1,2)}$.
$(2,9),(3,10),(4,11),(5,12),(47,56) \in \overline{(5,12)}$.
(e) Define the operation $\overline{(a, b)} \oplus \overline{(c, d)}=\overline{(a+c, b+d)}$. Prove that \oplus is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes $\overline{(a, b)}$ and $\overline{(c, d)}$ where $(a, b),(c, d) \in \mathbb{N} \times \mathbb{N}$.
Then $a+c$ and $b+d$ are both in \mathbb{N} because \mathbb{N} is closed under addition.

Thus, $\overline{(a, b)} \oplus \overline{(c, d)}=\overline{(a+c, b+d)}$ is a valid equivalence class in $\mathbb{N} \times \mathbb{N} / \sim$.
2) Now suppose that $\overline{(a, b)}, \overline{(c, d)}, \overline{(e, f)}$, and $\overline{(g, h)}$ are equivalence classes of $\mathbb{N} \times \mathbb{N} / \sim$.
Further suppose that $\overline{(a, b)}=\overline{(e, f)}$ and $\overline{(c, d)}=\overline{(g, h)}$.
We need to show that $\overline{(a, b)} \oplus \overline{(c, d)}=\overline{(e, f)} \oplus \overline{(g, h)}$.
We have that $a+f=b+e$ since $\overline{(a, b)}=\overline{(e, f)}$.
We also have that $c+h=d+g$ since $\overline{(c, d)}=\overline{(g, h)}$.
Adding these two equations gives $a+f+c+h=b+e+d+g$.
Rearranging gives $(a+c)+(f+h)=(b+d)+(e+g)$.
Therefore, $\overline{(a+c, b+d)}=\overline{(e+g, f+h)}$.
Hence $\overline{(a, b)} \oplus \overline{(c, d)}=\overline{(e, f)} \oplus \overline{(g, h)}$.
The above arguments show that \oplus is a well-defined operation on the equivalence classes of $\mathbb{N} \times \mathbb{N} / \sim$.
9. (Constructing the rational numbers from the integers) Let $S=\mathbb{Z} \times$ $(\mathbb{Z}-\{0\})$. Define the relation \sim on S where $(a, b) \sim(c, d)$ if and only if $a d=b c$.
(a) Is $(1,5) \sim(-3,-15)$?

Solution: Yes, because $1(-15)=5(-3)$.
(b) Is $(-1,1) \sim(2,3)$?

Solution: No, because $(-1)(3) \neq 1(2)$.
(c) Prove that \sim is an equivalence relation.

Proof. Reflexive: Let $(a, b) \in \mathbb{Z} \times(\mathbb{Z}-\{0\})$.
Then $a b=b a$.
So $(a, b) \sim(a, b)$.
Symmetric: Let $(a, b),(c, d) \in \mathbb{Z} \times(\mathbb{Z}-\{0\})$.
Suppose $(a, b) \sim(c, d)$.
We know that $a d=b c$, because $(a, b) \sim(c, d)$.
So $c b=d a$.

Hence $(c, d) \sim(a, b)$.
Transitive: Let $(a, b),(c, d),(e, f) \in \mathbb{Z} \times(\mathbb{Z}-\{0\})$.
Note that $d \neq 0$ and $f \neq 0$ since $d, f \in \mathbb{Z}-\{0\}$.
Suppose $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$.
We know that $a d=b c$ and $c f=d e$, because $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$.
Thus

$$
a d=b c=b\left(\frac{d e}{f}\right)=\frac{b d e}{f}
$$

Thus $a d f=b d e$.
Since $d \neq 0$ we can divide by d to get $a f=b e$.
So $(a, b) \sim(e, f)$ since $a f=b e$.
Therefore, \sim is an equivalence relation, because it is reflexive, symmetric, and transitive.
(d) List five elements from each of the following equivalence classes: $\overline{(1,1)}, \overline{(0,2)}, \overline{(2,3)}$.
Solution: Some possible answers:
$(2,2),(3,3),(4,4),(5,5),(47,47) \in \overline{(1,1)}$.
$(0,1),(0,2),(0,-1),(0,-2),(0,-47) \in \overline{(0,2)}$.
$(2,3),(4,6),(6,9),(-2,-3),(-4,-6) \in \overline{(2,3)}$.
(e) Define the operation $\overline{(a, b)} \oplus \overline{(c, d)}=\overline{(a d+b c, b d)}$. Prove that \oplus is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes $\overline{(a, b)}$ and $\overline{(c, d)}$ where $(a, b),(c, d) \in \mathbb{Z} \times(\mathbb{Z}-\{0\})$.
Then $a d+b c \in \mathbb{Z}$ because $a, b, c, d \in \mathbb{Z}$ and the integers are closed under addition and multiplication.
Also, since $b, d \in \mathbb{Z}-\{0\}$ we have that $b d \neq 0$ and so $b d \in \mathbb{Z}-\{0\}$. Thus $(a d+b c, b d) \in \mathbb{Z} \times(\mathbb{Z}-\{0\})$ and $\overline{(a, b)} \oplus \overline{(c, d)}=\overline{(a d+b c, b d)}$ is a valid equivalence class.
2) Now suppose that $\overline{(a, b)}, \overline{(c, d)}, \overline{(x, y)}$, and $\overline{(w, z)}$ are equivalence classes in $\mathbb{Z} \times(\mathbb{Z}-\{0\}) / \sim$.

Further suppose that $\overline{(a, b)}=\overline{(x, y)}$ and $\overline{(c, d)}=\overline{(w, z)}$.
We need to show that $\overline{(a, b)} \oplus \overline{(c, d)}=\overline{(x, y)} \oplus \overline{(w, z)}$.
That is, we need to show that $\overline{(a d+b c, b d)}=\overline{(x z+y w, y z)}$.
The above is equivalent to showing that $(a d+b c) y z=b d(x z+y w)$. Let's do this.
Since $\overline{(a, b)}=\overline{(x, y)}$ we have that $a y=b x$.
Since $\overline{(c, d)}=\overline{(w, z)}$ we have that $c z=d w$.
Therefore, using the equations $a y=b x$ and $c z=d w$ we get that

$$
\begin{aligned}
(a d+b c) y z & =a d y z+b c y z \\
& =(a y)(d z)+(c z)(b y) \\
& =(b x)(d z)+(d w)(b y) \\
& =b d(x z+y w)
\end{aligned}
$$

Thus, $\overline{(a d+b c, b d)}=\overline{(x z+y w, y z)}$.
Thus, the operation \oplus is well-defined on the equivalence classes of $\mathbb{Z} \times(\mathbb{Z}-\{0\}) / \sim$.
(f) Define the operation $\overline{(a, b)} \odot \overline{(c, d)}=\overline{(a c, b d)}$. Prove that \odot is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes $\overline{(a, b)}$ and $\overline{(c, d)}$ where $(a, b),(c, d) \in \mathbb{Z} \times(\mathbb{Z}-\{0\})$.
Then $a c \in \mathbb{Z}$ because $a, c \in \mathbb{Z}$ and the integers are closed under multiplication.
Also, since $b, d \in \mathbb{Z}-\{0\}$ we have that $b d \neq 0$ and so $b d \in \mathbb{Z}-\{0\}$. Thus $(a c, b d) \in \mathbb{Z} \times(\mathbb{Z}-\{0\})$ and $\overline{(a, b)} \odot \overline{(c, d)}=\overline{(a c, b d)}$ is a valid equivalence class.
2) Now suppose that $\overline{(a, b)}, \overline{(c, d)}, \overline{(x, y)}$, and $\overline{(w, z)}$ are equivalence classes in $\mathbb{Z} \times(\mathbb{Z}-\{0\}) / \sim$.
Further suppose that $\overline{(a, b)}=\overline{(x, y)}$ and $\overline{(c, d)}=\overline{(w, z)}$.
We need to show that $\overline{(a, b)} \odot \overline{(c, d)}=\overline{(x, y)} \odot \overline{(w, z)}$.
That is, we need to show that $\overline{(a c, b d)}=\overline{(x w, y z)}$.

The above is equivalent to showing that $(a c)(y z)=(b d)(x w)$.
Let's do this.
Since $\overline{(a, b)}=\overline{(x, y)}$ we have that $a y=b x$.
Since $\overline{(c, d)}=\overline{(w, z)}$ we have that $c z=d w$.
Therefore, using the equations $a y=b x$ and $c z=d w$ we get that

$$
(a c)(y z)=(a y)(c z)=(b x)(d w)=(b d)(x w) .
$$

Thus, $\overline{(a c, b d)}=\overline{(x w, y z)}$.
Therefore, the operation \odot is well-defined on the equivalence classes of $\mathbb{Z} \times(\mathbb{Z}-\{0\}) / \sim$.

