Math 3450

$$
4 / 18 / 24
$$

HF 3
(7) In \mathbb{Z}_{n} is $\bar{a} \oplus \bar{b}=\overline{a^{b}}$ well-defined?

No.
Reason 1: $\mathbb{Z}_{4}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$

$$
\overline{2} \oplus \overline{-1}=\overline{2^{-1}}=\overline{\left(\frac{1}{2}\right)} \leftarrow \underline{\text { that's not in } \mathbb{Z}_{4} \text { ! }}
$$

Reason 2: $\mathbb{Z}_{4}=\{\overline{0}, \bar{i}, \overline{2}, \bar{\jmath}\}$

$$
T=\overline{5}
$$

To be well-defined we would need $\overline{2} \oplus T=\overline{2} \oplus \overline{5}$
But, $\bar{z} \oplus T=\overline{2^{\prime}}=\overline{2}$

$$
\begin{aligned}
& 2 \oplus 1=\overline{2^{s}}=\overline{32}=\overline{0} \leftarrow \bar{s} \\
& \bar{s}=
\end{aligned}
$$

(8) (e) $N=\{1,2,3, \ldots\}$

$$
S=\mathbb{N} \times \mathbb{N}=\{(1,1),(1,2),(2,1), \ldots\}
$$

Define $(a, b) \sim(c, d)$ means

$$
a+d=b+c . \leftrightarrow a-b=c-d
$$

Ex: $(1,2) \sim(4,5)$ since $1+5=2+4$

$$
(1,2) \sim(7,8) \text { since } 1+8=2+7
$$

You show \sim is an equiv. relation

$$
\begin{aligned}
& \text { You show } \sim \text { is an equiv. dIckinson } \\
& \overline{(1,2)}=\{(1,2),(2,3),(3,4),(4,5), \ldots\} \\
& \overline{(3,8)}=\{(1,6),(2,7),(3,8),(4,9), \ldots\} \\
& \overline{(8,8)}=\{(1,1),(2,2),(3,3),(4,4),(5,5), \ldots\}
\end{aligned}
$$

Define \oplus on S / \sim on the set of equivalence classes:

$$
\overline{(a, b)} \oplus \overline{(c, d)}=\overline{(a+c, b+d)}
$$

Ex: $\overline{(1,2)} \oplus \overline{(3,8)}=\overline{(4,10)}$

$$
\overline{(2,3)} \oplus \overline{(2,7)}=\overline{(4,10)}
$$

Prove \oplus is well-defined:
(1) Let $\overline{(a, b)}, \overline{(c, d)}$ be two equivalence classes.
Since $(a, b),(c, d) \in S$ we know $a, b, c, d \in \mathbb{N}$.
So, $\overline{(a, b)} \oplus \overline{(c, d)}=\overline{(a+c, b+d)}$ is still a valid equalence class since $a+c, b+d \in \mathbb{N}$.
(2) Suppose $\overline{(a, b)}=\overline{(x, y)}$ and

$$
\overline{(c, d)}=\overline{(m, n)} .
$$

We need to show that

$$
\overline{(a, b)} \oplus \overline{(c, d)}=\overline{(a+c, b+d)}
$$

is equal to

$$
\begin{aligned}
& \text { equal to } \\
& (x, y) \oplus \overline{(m, n)}=\overline{(x+m, y+n)}
\end{aligned}
$$

Since $\overline{(a, b)}=\overline{(x, y)}$ we know $a-b=x-y$.
Since $\overline{(c, d)}=\overline{(m, n)}$ we know $c-d=m-n$.
Thus,

$$
\begin{aligned}
(a+c)-(b+d) & =(a-b)+(c-d) \\
& =(x-y)+(m-n) \\
& =(x+m)-(y+n)
\end{aligned}
$$

Therefore, $\overline{(a+c, b+d)}=\overline{(x+m, y+n)}$.

HF 4
(2) (e)

$$
\begin{aligned}
& f: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{4} \\
& f(\bar{x})=\bar{z} \cdot \bar{x}+T
\end{aligned}
$$

range (f)

$$
\begin{aligned}
& f(\overline{0})=\overline{2} \cdot \overline{0}+T=\bar{T} \\
& f(T)=\overline{2} \cdot T+T=\overline{3} \\
& f(\overline{2})=\overline{2} \cdot \overline{2}+T=\overline{5}=T \\
& f(\overline{3})=\overline{2} \cdot \overline{3}+T=\overline{7}=\overline{3}
\end{aligned}
$$

$$
g: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{4}, g(\bar{x})=\overline{3} \bar{x}+T
$$

9 is $1-1$ and onto.
What is g^{-1} ?
Solve for \bar{x} in $\bar{y}=\overline{3} \bar{x}+T$.

$$
\begin{aligned}
& \text { Solve for } \bar{x}=\overline{3} \bar{x}+\bar{T} \\
& \bar{y}=\overline{3} \bar{i}+\overline{3}=\overline{0} \\
& \bar{y}+\overline{3}=\overline{3}\left[\begin{array}{l}
\text { add } \\
\overline{3} \bar{y}+\overline{9}=\overline{9} \bar{x} \\
\bar{y}+T
\end{array}\right] \overline{9}=\bar{T}
\end{aligned}
$$

So, $g^{-1}(\bar{x})=\overline{3} \bar{x}+T \Leftarrow \frac{\text { interchange }}{\bar{x} \& \bar{y}}$
So, $g=g^{-1}$.

HoW 4
(9) Let $f: A \rightarrow B, g: B \rightarrow C$.

If f is not one-to-one, then got is not une-to-one.

If P, then Q \}contrapositive is equivalent to If $\neg Q$, then $\neg P$.

Contrapositive of above:
If goo is one-to-ones, then f is one-to-one
proof:
Assume $g \circ f$ is one-to-one.
Let's show this implies that f is one-to-one.
Suppose that $f\left(a_{1}\right)=f\left(a_{2}\right)$.
So, $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$
That is, $(g \circ f)\left(a_{1}\right)=(g \circ f)\left(a_{2}\right)$
Then, $a_{1}=a_{2}$ since $g \circ f$ is $1-1$.
Thus, $f\left(a_{1}\right)=f\left(a_{2}\right)$ implies $a_{1}=a_{2}$.

So, f is 1-1.
(12) $(1+W 4)$

$$
\begin{aligned}
& A=N \cup\{0\}=\{0,1,2,3,4,5, \ldots\} \\
& f: A \times A \rightarrow A \\
& f(m, n)=m^{2}+n^{2} \\
& A \times A \\
& (0,0) \cdots \\
& (0,1) \cdots \\
& (1,0) \cdots \\
& (1,1) \cdots \\
& (1,2) \\
& \vdots \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \hline
\end{aligned}
$$

(d) Show f is not $1-1$

Since $f(0,1)=1=f(1,0)$ and $(0,1) \neq(1,0)$ we know f is not $1-1$.
(e) Show f is not unto

There is no (m, n) with $f(m, n)=3$ ie with

$$
m^{2}+n^{2}=3
$$

See with table:

(m, n)	$m^{2}+n^{2}$
$(0,0)$	0
$(1,0)$	1
$(0,1)$	1

$$
\begin{array}{c|cc}
(1,1) & 2 \\
(0,2) & 4 \\
(2,0) & 4 \\
(1,2) & 5 \\
(2,1) & 5 & \begin{array}{c}
\text { always } \\
\text { greater } \\
\text { than } 3
\end{array} \\
\vdots & \&
\end{array}
$$

