Math 3450
4/11/24

Let's calculate $\pi_{6}^{-1}(\bar{Y})$ where $\bar{Y}=\{T\}$

Note: $-5,1,7 \in \pi_{6}^{-1}(\Psi)$
And,

$$
\begin{aligned}
\text { nd) } & =6(-1)+1 \\
1 & =6(0)+1 \\
7 & =6(1)+1
\end{aligned}
$$

Also, $13 \in \pi_{6}^{-1}(I)$ and

$$
13=6(2)+1
$$

Claim: $\pi_{6}^{-1}(\bar{Y})=\{6 k+1 \mid k \in \mathbb{Z}\}$
proof:
$(\subseteq):$ Let $x \in \pi_{6}^{-1}(\bar{\Psi})$.

So, $\pi_{6}(x) \in \bar{Y}$
Thus, $\pi_{6}(x)=T$.
So, $\bar{x}=T$ in \mathbb{Z}_{6}.
Then, $x \equiv 1(\bmod 6)$.
Thus, $6 \mid(x-1)$.

Hence, $x-1=6 l$ where $l \in \mathbb{Z}$.
Therefore, $x=6 l+1$.
Thus, $x \in\{6 k+1 \mid k \in \mathbb{Z}\}$
Hence, $\pi_{6}^{-1}(7) \subseteq\{6 k+1 \mid k \in \mathbb{Z}\}$
$(\underline{Z}):$ Let $y \in\{6 k+1 \mid k \in \mathbb{Z}\}$

So, $y=6 l+1$ where $l \in \mathbb{Z}$.
Then,

$$
\begin{aligned}
\pi_{6}(y) & =\bar{y}=\overline{6 l+1} \\
& =\overline{6} \bar{l}+\bar{T} \\
& =\overline{0} l+T \\
& =T
\end{aligned}
$$

$$
\text { So, } \pi_{6}(y) \in \Psi
$$

Thus, $y \in \pi_{6}^{-1}(\Psi)$.
Therefore,

$$
\{6 k+1 \mid k \in \mathbb{Z}\} \subseteq \mathbb{T}_{6}^{-1}(\mathbb{I})
$$

By (\subseteq) and $(\geq), \pi_{6}^{-1}(\bar{I})=\{6 k+1 \mid k \in \mathbb{Z}\}$

Theorem: Let A, B, W, Z be sets where $W \subseteq A$ and $Z \subseteq A$. Let $f: A \rightarrow B$.

Then:
(1) $f(w \cup z)=f(w) \cup f(z)]_{\# 4}^{H W}$
(2) $f(w \cap z) \subseteq f(w) \cap f(z)$
(3) Give an example to show that $f(w \cap z)=f(w) \cap f(z)$ is not always true
proof: Let's prove (2), (3), then (1)
(z) We want to show that

$$
f(w \cap z) \subseteq f(w) \cap f(z)
$$

Let $b \in f(w \cap z)$.

Then there exists $a \in W \cap Z$ where $f(a)=b$.

Since $a \in W \cap Z$ we know $a \in W$ and $a \in Z$.
Since $a \in W$ and $f(a)=b$ we know $b \in f(W)$
Since $a \in Z$ and $f(a)=b$ we know $b \in f(z)$.
Thus, $b \in f(w) \cap f(z)$.
Hence, $f(w \cap z) \subseteq f(w) \cap f(z)$.
(3) Let's give an example to show that

$$
\begin{aligned}
& \text { show that } \\
& f(w \cap z)=f(w) \wedge f(z)
\end{aligned}
$$

is not always true.

Consider the following:

In this example,

$$
\begin{aligned}
& \text { In this example, } \\
& f(w \cap z)=\{y\} \neq\{4,5\}=f(w) \cap f(z)
\end{aligned}
$$

(1) We want to show that

$$
f(w \cup z)=f(w) \cup f(z)
$$

$(\subseteq):$ Let $y \in f(w \cup z)$.

Then there exists $x \in W \cup Z$ where $f(x)=y$.

Since $x \in W \cup z$ we know $x \in W$ or $x \in Z$.
case 1: Suppose $x \in W$.
Then since $x \in W$ and $f(x)=y$ we know $y \in f(W)$

Cause 2: Suppose $x \in Z$.
Then since $x \in Z$ and $f(x)=y$ we know $y \in f(z)$.

So either $y \in f(w)$ or $y \in f(z)$ from the two cases above.
Thus, $y \in f(w) \cup f(z)$.
(\geq) : Let $b \in f(w) \cup f(z)$.
Then, $b \in f(w)$ or $b \in f(z)$.
case l: Suppose $b \in f(w)$.
Then there exists $a \in W$
where $f(a)=b$. B

But $a \in w \subseteq w \cup z$.
So, $a \in W \cup Z$ and $f(a)=b$.
Thus, $b \in f(w \cup z)$
Case 2: Suppose $b \in f(z)$.
Then there exists $a \in Z$
where $f(a)=b$.

But $a \in Z \subseteq w \cup Z$,
So, $a \in W \cup Z$ and $f(a)=b$.
Thus, $b \in f(w \vee z)$.

Therefore, in either case I or case 2 we get $b \in f(w \cup z)$.
Thus, $f(w) \cup f(z) \subseteq f(w \cup z)$.
By, (\leq) and (\supseteq) we get

$$
f(w \cup z)=f(w) \cup f(z)
$$

