Math 3450

$$
3 / 7 / 24
$$

Well-defined functions
Ex: Suppose you and your friend Francis want to define a function on Ch. You say "How about this function? $f: Q \rightarrow Q$ where $f\left(\frac{a}{b}\right)=\frac{b}{a}{ }^{\prime \prime}$
Francis says "I don't know about that function. What about $f\left(\frac{0}{1}\right)=\frac{1}{0}$? That doesn't seem to make sense." You say "You're right. good call." Then you say, "ok I've got
another idea. How a bout $g: C h \rightarrow C$ where $g\left(\frac{a}{b}\right)=a$? That totally works. For example, $g\left(\frac{3}{5}\right)=3$ and $g\left(\frac{0}{2}\right)=0 . "$
Then Francis says, "Hey wait a minute, $g\left(\frac{3}{5}\right)=3$ but $g\left(\frac{6}{10}\right)=6$ and $\frac{3}{5}=\frac{6}{10}$. Shouldn't g, agree un those numbers?"
You say "on yeah you're right."
The functions f and g above ace not well-defined.

How to check that $f: A \rightarrow B$ is well-defined
check two things:
(1) If $a \in A$, then $f(a) \in B$
(2) If some or all of the elements from A can be expressed in more than one way then we must check that if a_{1}, a_{2} are two expressions of the same element in $A\left(\right.$ ic $\left.a_{1}=a_{2}\right)$ then $f\left(a_{1}\right)=f\left(a_{2}\right)$

Ex: Let $f: Q \rightarrow Q$ where $\overline{f\left(\frac{a}{b}\right)}=\left(\frac{a}{b}\right)^{2}$.
Is f well-defined? Yes . proof that f is well-defined:
(1) Let $\frac{a}{b} \in \mathbb{Q}$.

So, $a, b \in \mathbb{Z}$ and $b \neq 0$.
Then, $f\left(\frac{a}{b}\right)=\left(\frac{a}{b}\right)^{2}=\frac{a^{2}}{b^{2}} 4$
We have that $a^{2}, b^{2} \in \mathbb{Z}$ and $b^{2} \neq 0($ since $b \neq 0)$. So, $\frac{a^{2}}{b^{2}} \in \mathbb{R}$.
(2) Suppose $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ and $\frac{a}{b}=\frac{c}{d}$.

Is $f\left(\frac{a}{b}\right)=f\left(\frac{c}{d}\right) P_{0}$
Method 1:
Since $\frac{a}{b}=\frac{c}{d}$, then by squaring both sides we get $\left(\frac{a}{b}\right)^{2}=\left(\frac{c}{d}\right)^{2}$. So, $f\left(\frac{a}{b}\right)=f\left(\frac{c}{d}\right)$

You might ask, why is this true?
Method 2:
Recall how we define two fractions to be equal:

$$
\frac{w}{x}=\frac{y}{z} \text { means } w z=x y
$$

Suppose $\frac{a}{b}=\frac{c}{d}$.
Then $a d=b c$.
So, $\left.(a d)^{2}=(b c)^{2}\right]$ $u \sin g$ integer molt.

Then, $a^{2} d^{2}=b^{2} c^{2}$ well-

So, $\frac{a^{2}}{b^{2}}=\frac{c^{2}}{d^{2}}$
Thus, $f\left(\frac{a}{b}\right)=f\left(\frac{c}{d}\right)$

From (1) and (2) abuse f is well-defined.

Ex: Let $n \in \mathbb{Z}, n \geqslant 2$. Pick $a \in \mathbb{Z}$.
Define $f_{a}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$
by $f_{a}(\bar{x})=\bar{a} \cdot \bar{x}$
Let's do some examples
when $n=4, \mathbb{Z}_{4}=\{\overline{0}, i, \overline{2}, \overline{3}\}$

$$
\begin{aligned}
& f_{1}(\overline{0})=\bar{T} \cdot \overline{0}=\overline{0} \\
& f_{1}(\bar{T})=T \cdot T=T \\
& f_{1}(\overline{2})=T \cdot \overline{2}=\overline{2} \\
& f_{1}(\overline{3})=\bar{T} \cdot \overline{3}=\overline{3}
\end{aligned}
$$

$$
\begin{aligned}
f_{2}(\overline{0}) & =\overline{2} \cdot \overline{0}=\overline{0} \\
f_{2}(\bar{T}) & =\overline{2} \cdot \bar{T}=\overline{2} \\
f_{2}(\overline{2}) & =\overline{2} \cdot \overline{2}=\overline{4} \\
& =\overline{0} \\
f_{2}(\overline{3}) & =\overline{2} \cdot \overline{3}=\overline{6} \\
& =\overline{2}
\end{aligned}
$$

$$
\begin{gathered}
f_{3}(\overline{0})=\overline{3} \cdot \overline{0}=\overline{0} \\
f_{3}(\bar{T})=\overline{3} \cdot \bar{T}=\overline{3} \\
f_{3}(\overline{2})=\overline{3} \cdot \overline{2}=\overline{6} \\
=\overline{2} \\
f_{3}(\overline{3})=\overline{3} \cdot \overline{3}=\overline{9} \\
=T
\end{gathered}
$$

$$
\begin{aligned}
f_{0}(\bar{x}) & =\overline{0} \cdot \bar{x} \\
& =\overline{0}
\end{aligned}
$$

Theorem: Let $n \in \mathbb{Z}, n \geqslant 2$.
Let $a \in \mathbb{Z}$. Let $f_{a}: \mathbb{Z}_{n}+\mathbb{Z}_{n}$
be given by $f_{a}(\bar{x})=\bar{a} \cdot \bar{x}$.
Then f_{a} is well-defined.
proof:
(1) Let $\bar{x} \in \mathbb{Z}_{n}$ where $x \in \mathbb{Z}$.

Since $x, a \in \mathbb{Z}$ we know $a x \in \mathbb{Z}$.
Thus,

$$
f_{a}(\bar{x})=\bar{a} \cdot \bar{x}=\overline{a x} \in \mathbb{Z}_{n} .
$$

(2) Let $\bar{x}, \bar{y} \in \mathbb{Z}_{n}$ where $\bar{x}=\bar{y}$.

Then,

$$
f_{a}(\bar{x})=\bar{a} \cdot \bar{x} \frac{\bar{b}}{\overline{4}} \bar{a} \cdot \bar{y}=f_{a}(\bar{y}) .
$$

when we talked about well-defined operations we proved that if $\bar{b}=\bar{c}$ and $\bar{d}=\bar{e}$, then $\bar{b} \cdot \bar{d}=\bar{c} \cdot \bar{e}$

Test review
Hammack, Ch 8
(18) Prove $A \times(B-C)=(A \times B)-(A \times C)$ where A, B, C are sets.
proof:
(\subseteq) : Let $w \in A \times(B-C)$
Then, $w=(x, y)$
where $x \in A$ and $y \in B-C$.
So, $x \in A$ and $y \in B$ and $y \notin C$.
Then, $(x, y) \in A \times B+\left[\begin{array}{l}\text { since } \\ x \in A \\ y \in B\end{array}\right.$
and $(x, y) \notin A x C \leftarrow \begin{aligned} & \text { since } \\ & y \notin c\end{aligned}$
Thus, $(x, y) \in(A \times B)-(A \times C)$
Therefore,

$$
A \times(B-C) \subseteq(A \times B)-(A \times C)
$$

(2): Let $z \in(A \times B)-(A \times C)$.

Then, $z \in(A \times B)^{\text {and }}$

$$
z \notin(A \times C)
$$

So, $z=(x, y)$ where
$\rightarrow\left[\begin{array}{ll}x \in A & \text { and } y \in B \\ \text { and } y \notin C .\end{array}\right]$
techniquely $z=(x, y) \notin A X C$
means $x \notin A$ or $y \notin C$
but we know $X \in A$
since $z \in A \times B$ so
we can conclude that $y \notin C$
Thus,

$$
\begin{aligned}
& \text { hus, } \\
& z=(x, y) \in A x(B-C) \in\left[\begin{array}{l}
\text { since } \\
x \in A \\
y \in B \\
y \neq C
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \text { Hence } \\
& (A \times B)-(A \times C) \subseteq A \times(B-C) \text {. }
\end{aligned}
$$

