

[Well-defined functions]

Ex: Suppose you and your friend Francis want to define a function on Q. You say "How about this function? $f: Q \rightarrow Q$ where $f(\frac{a}{b}) = \frac{b}{a}$ "

Francis says "I don't Know about that function. What about F(-) = -? That duesn't seem to make sense." You say "you're right. good call." Then you say, "OK I've got

another idea. How about
g:
$$Q \rightarrow Q$$
 where $g(\frac{a}{b}) = a$?
That totally works. For example,
 $g(\frac{3}{5}) = 3$ and $g(\frac{0}{2}) = 0$."
Then Francis says, "Hey wait
a minute, $g(\frac{3}{5}) = 3$ but $g(\frac{6}{10}) = 6$
and $\frac{3}{5} = \frac{6}{10}$. Shouldn't g
agree on those numbers?"
You say "Un yeah you're right."

The functions & and g above are not well-defined.

How to check that f: A > B is well-defined Check two things: $DIFAEA, then f(a) \in B$ 2 If some or all of the elements from A can be expressed in more than one way then we must check that if a, az are two expressions of the same element in $A(ie q_1 = q_2)$ then $f(a_1) = f(a_2)$

Ex: Let f: Q -> Q where $f\left(\frac{\alpha}{b}\right) = \left(\frac{\alpha}{b}\right)^2,$ Is f well-defined? Yes? proof that f is well-defined: \square Let $\stackrel{\alpha}{\rightarrow} \in \mathbb{Q}$. So, a, b EZ and b = 0. Then, $f\left(\frac{a}{b}\right) = \left(\frac{a}{b}\right)^2 = \frac{a}{b^2} \leftarrow$ We have that a, b = Z and $b^2 \neq 0$ (since $b \neq 0$). $S_{0}, \frac{\alpha}{b^{2}} \in \mathbb{Q}$.

2) Suppose $\frac{\alpha}{b}$, $\frac{c}{d} \in \mathbb{C}$ and $\frac{\alpha}{b} = \frac{c}{d}$.

Is
$$f(\frac{a}{b}) = f(\frac{c}{d})$$

Method 1
Since $\frac{b}{b} = \frac{c}{d}$, then by squaring
both sider we get $\binom{a}{b}^2 = \binom{c}{d}^2$.
So, $f(\frac{a}{b}) = f(\frac{c}{d})$
You might ack, why is this true?
Method 2:
Recall how we define two fractions
to be equal:
 $\frac{w}{x} = \frac{y}{z}$ means $wz = xy$

Suppose
$$\frac{\alpha}{b} = \frac{c}{d}$$
.
Then $ad = bc$. Jusing
integer
So, $(ad)^2 = (bc)^2$ mult.
Then, $a^2d^2 = b^2c^2$ well-
defined
So, $\frac{\alpha^2}{b^2} = \frac{c^2}{d^2}$
Thus, $f(\frac{\alpha}{b}) = f(\frac{c}{d})$

From (1) and (2) above f is well-defined.

Ex: Let nEZ, n>2. $\alpha \in \mathbb{Z}$. Pick Define fa: Zun > Un $f_{\alpha}(\overline{X}) = \overline{\alpha} \cdot X$ 64 do some examples Let's n = 4, $\mathbb{Z}_{4} = \frac{2}{5} \overline{5}, \overline{5}, \overline{5}$ when Ly ZL Y $\overline{O} = \overline{O} \cdot \overline{I} = (\overline{O}), \overline{f}$ $f_{1}(\tau) = \overline{1} \cdot \overline{1} = \overline{1}$ $f_{1}(z) = \overline{1 \cdot 2} = 2$ **.** 2 $f_{1}(\overline{3}) = \overline{1 \cdot 3} = \overline{3}$ 13

 $f_{x}(\overline{o}) = \overline{Z} \cdot \overline{O} = \overline{O}$ $f_2(\tau) = 2 \cdot \tau = 2$ $f_{2}(\bar{z}) = 2.\bar{z} = 4$ \bigcirc = 2.3=6 $F_{3}(\bar{3})$ Z

 $f_3(\bar{o}) = \bar{3}, \bar{0} = \bar{0}$ $f_3(\overline{1}) = \overline{3} \cdot \overline{1} = \overline{3}$ $f_3(\bar{z}) = \bar{3}, \bar{2} =$ 6 2 g 3.3= $f_{3}(\bar{3})$

 $f(\bar{x})$ $\overline{0} \cdot X$ heurem: Let nEZ, NZZ. $a \in \mathbb{Z}$. Let $f_a: \mathbb{Z}_n \to \mathbb{Z}_n$ 1 p.+ given by $f_{\alpha}(\bar{x}) = \bar{\alpha} \cdot \bar{x}$. be Then fais well-defined. proof: XEZn Where XEL (I) Let

Since X, a EZ we Know axEZ. Thus, $f_{\alpha}(\bar{x}) = \bar{\alpha} \cdot \bar{x} = \bar{\alpha} \times \bar{x} \in \mathbb{Z}_{n}.$ 2 Let $\overline{x}, \overline{y} \in \mathbb{Z}$, where $\overline{x} = \overline{y}$. Then, $(since \overline{x} = \overline{y})$ $f_{\alpha}(\overline{X}) = \overline{\alpha} \cdot \overline{X} = \overline{\alpha} \cdot \overline{y} = f_{\alpha}(\overline{y}).$ when we talked about well-defined operations we proved that if B = c and J = e, then $\overline{b} \cdot d = \overline{c} \cdot \overline{e}$

Test review Hammack, Ch 8 (18) Prove $A \times (B-C) = (A \times B) - (A \times C)$ where A, B, C are sets. Proot: (\subseteq) : Let $W \in A \times (B - C)$

Then, w = (x, y)where $x \in A$ and $y \in B^{-C}$. So, $x \in A$ and $y \in B$ and $y \notin C$. Then, $(x, y) \in A \times B \notin (x \in A)$ $y \in B$

and (x,y)∉AxC ← (since y∉c) Thus, $(x,y) \in (A \times B) - (A \times C)$ Therefore, $A \times (B - C) \subseteq (A \times B) - (A \times C).$ 2]. Let ZE (AXB)-(AXC). Then, ZE(AXB) and $Z \notin (A \times C)$. $S_{0}, Z = (X, Y)$ where $f(x \in A \text{ and } y \in B)$ $f(x \in A \text{ and } y \notin C.$ techniquely Z=(X,Y) &AXC

means XEA or YEC but we know XEA Since ZEAXBSD We can conclude that y & C YUS_{J} $Z = (X, Y) \in AX(B-C) \in \begin{cases} since \\ X \in A \\ Y \in B \\ Y \notin C \end{cases}$ lhus,

Hence $(A \times B) - (A \times C) \subseteq A \times (B - C).$

