$$
\begin{gathered}
\text { Math } 3450 \\
3 / 5 / 24
\end{gathered}
$$

$3 / 5$	$3 / 7$
$3 / 12$	$3 / 14$
Review Day	Test 1

Topic 4-Functions

We are going to formally define functions as sets but then after that we wont really use that method anymore we will just use formulas like us val.

Ex: Consider the function $f(x)=x^{2}$ where $x \in \mathbb{R}$.

The graph is

$$
\left\{\left(x, x^{2}\right) \mid x \in \mathbb{R}\right\}
$$

This graph lives inside of

$$
\begin{aligned}
& \mathbb{R} \times \mathbb{R} \\
& \mathbb{R} \text { (domain) } \begin{array}{l}
\text { codomain, where } \\
\text { the range lives }
\end{array}
\end{aligned}
$$

Ex: $f(x, y)=x^{2}+y^{2}$ graph lives in

$$
\mathbb{R}^{3}=\frac{\mathbb{R} \times \mathbb{R}}{\uparrow} \times \frac{\mathbb{R}}{\uparrow}
$$

Def: Let A and B be sets.
Let f be a subset of $A \times B$.
We say that $\frac{f \text { is a function }}{B}$
from A to B if
(1) For every $a \in A$ there exists $b \in B$ where $(a, b) \in f$

and
(2) if $\left(a, b_{1}\right) \in f$ and

$$
\left.\begin{aligned}
& \text { if }\left(a, b_{1}\right) \in f \text { and } \\
& \left(a, b_{2}\right) \in f \text {, then } b_{1}, b_{2}
\end{aligned} \right\rvert\, \begin{aligned}
& \text { vertical } \\
& \text { line } \\
& \text { test }
\end{aligned}
$$

If this is the case then we write $f: A \rightarrow B$ to mean that f is a function from A to B

The set A is called the domain of f.
The set B is called the co-domain of f.

If $(a, b) \in f$ then
we write $f(a)=b$
The range of f is

$$
\text { range }(f)=\left\{\begin{array}{l|l}
b \in B & \begin{array}{l}
\text { there exists } a \in A \\
\text { with } f(a)=b
\end{array}
\end{array}\right\}
$$

$$
\begin{aligned}
& \frac{E x:}{} A=\left\{-1,100,3, \frac{1}{3}\right\} \\
& B=\left\{\pi,-12,-1, \frac{1}{2}, 17,14\right\} \\
& f=\left\{(-1,-1),(100, \pi),(3,17),\left(\frac{1}{3},-1\right)\right\} \\
& f(-1)=-1 \quad f(100)=\pi \quad f\left(\frac{1}{3}\right)=-1 \\
& f(3)=17
\end{aligned}
$$

picture

Is f a function from A to B ?
(1) f is defined on all of $A>$
(2) no element of A gets mapped to more than one element of B

Yes, f is a function from A to B.

$$
\begin{aligned}
& \operatorname{domain}(f)=A \\
& \text { co-domain }(f)=B \\
& \operatorname{range}(f)=\underbrace{\{\pi,-1,17\}}_{\begin{array}{c}
\text { subset of } \\
\text { co-domnin }
\end{array}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex: } A=\left\{-1,100,3, \frac{1}{3}\right\} \\
& B=\left\{\pi,-12,-1, \frac{1}{2}, 17,14\right\} \\
& g=\left\{\begin{array}{ccc}
\{(100, \pi), & \left.(3,17),\left(\frac{1}{3},-1\right),(100,-12)\right\} \\
g & T & \uparrow
\end{array}\right]
\end{aligned}
$$

(1) $g(-1)$ is not defined
(2) $g(100)$ has two
values: $\pi \&-12$
g is not a function from A to B.

Let's now use formulas to define functions instead of defining them as subsets of $A \times B$.

Ex: Let A be any non-empty set. The identity function on A is the function

$$
i_{A}: A \rightarrow A
$$

defined as

$$
\begin{aligned}
& \text { fined as } \\
& i_{A}(x)=x \quad \text { for all } x \in A \text {. }
\end{aligned}
$$

Sometimes we will just write i instead of i_{A}.
Formally you can think of

$$
\begin{gathered}
\text { Formally you can think }\} \subseteq A x A \\
i_{A}=\{(x, x) \mid x \in A\} \subseteq \\
\qquad i_{A}(x)=x
\end{gathered}
$$

Ex: Let $n \in \mathbb{Z}, n \geqslant 2$ Define the reduction modulo n map to be

$$
\pi_{n}: \mathbb{Z} \longrightarrow \mathbb{Z}_{n}
$$

where $\pi_{n}(x)=\bar{x}$

Ex: $n=3$

$$
\overline{\mathbb{Z}_{3}}=\{\overline{0}, T, \overline{2}\}
$$

$\pi_{3}: \mathbb{Z} \rightarrow \mathbb{Z}_{3}, \pi_{3}(x)=\bar{x}$
some computations are:

$$
\begin{array}{ll}
\text { some computations } \pi_{3}(0)=\overline{0} & \pi_{3}(-1)=\overline{-1}=\overline{2} \\
\pi_{3}(1)=T & \pi_{3}(-2)=-2=T
\end{array}
$$

$$
\begin{array}{ll}
\pi_{3}(2)=\overline{2} & \pi_{3}(-3)=\overline{-3}=\overline{0} \\
\pi_{3}(3)=\overline{3}=\overline{0} & \pi_{3}(-4)=\overline{-4}=\overline{2} \\
\pi_{3}(4)=\overline{4}=\overline{1} & \pi_{3}(-5)=\overline{-5}=T \\
\pi_{3}(5)=\overline{5}=\overline{2} &
\end{array}
$$

$$
\begin{aligned}
& \operatorname{domain}\left(\pi_{3}\right)=\mathbb{Z} \\
& \text { co-domain }\left(\pi_{3}\right)=\mathbb{Z}_{3} \\
& \text { range }\left(\pi_{3}\right)=\{\overline{0}, \tau, \overline{2}\}=\mathbb{Z}_{3}
\end{aligned}
$$

