$$
\begin{aligned}
& \text { Math } 3450 \\
& 3128124
\end{aligned}
$$

Theorem: Let A, B be sets. Let $f: A \rightarrow B$ be a one-to-one function. Let $C=$ range (f).
Let $f^{-1}: C \rightarrow A$ be the inverse of f. Then:

(1) domain $\left(f^{-1}\right)=\operatorname{range}(f)=C$
(2) $\operatorname{range}\left(f^{-1}\right)=\operatorname{domain}(f)=A$ In particular, f^{-1} is onto A.
(3) f^{-1} is one-to-one
(4) $\left(f^{-1} \circ f\right)(a)=a$ for all $a \in A$.

So, $f^{-1} \circ f=i_{A}$

(5) $\left(f \circ f^{-1}\right)(c)=c$ for all $c \in C$.

(6) If $g: C \rightarrow A$ and $g \circ f=i_{A}$, then $g=f^{-1} .\left[\begin{array}{l}6 \\ \text { Check a way to } \\ \text { chat } g=f^{-1}\end{array}\right]$
proof:
(1) By det of f^{-1} we have domain $\left(f^{-1}\right)=C=\operatorname{range}(f)$.
(2) Let's show that range $\left(f^{-1}\right)=A$

By def of f^{-1} we know

$$
\text { range }\left(f^{-1}\right) \subseteq A \text {. }
$$

Why is $A \subseteq$ range $\left(f^{-1}\right)$.
Let $a \in A$,
Let $c=f(a)$
And, $f^{-1}(c)=a$ by def of f^{-1}.
So, $a \in \operatorname{range}\left(f^{-1}\right)$,
Thus, $A \subseteq$ range $\left(f^{-1}\right)$
Therefore, $A=\operatorname{range}\left(f^{-1}\right)$.
(3) Let's show that f^{-1} is one-to-one.
Suppose $f^{-1}\left(c_{1}\right)=f^{-1}\left(c_{2}\right)$
where $c_{1}, c_{2} \in C$.
We need to show that $c_{1}=c_{2}$.
Let $a=f^{-1}\left(c_{1}\right)=f^{-1}\left(c_{2}\right)$.
Since $a=f^{-1}\left(c_{1}\right)$ we know that $f(a)=c_{1}$.
Since $a=f^{-1}\left(c_{2}\right)$ we know that $f(a)=c_{2}$.

So, $c_{1}=f(a)=c_{2}$.
Thus, f^{-1} is one-to-one.
(4) Let's show that $f^{-1} \circ f=i_{A}$.

Let $a \in A$.
Set $c=f(a)$.
So, $f^{-1}(c)=a$ by def of f^{-1}.
Then,

$$
\begin{aligned}
& \text { hen, } \begin{aligned}
\left(f^{-1} \circ f\right)(a) & =f^{-1}(f(a)) \\
& =f^{-1}(c) \\
& =a \\
& =i_{A}(a)
\end{aligned}
\end{aligned}
$$

Thus, $\left(f^{-1} \circ f\right)(a)=i_{A}(a)$ for all $a \in A$.
So, $f^{-1} \circ f=i_{A}$
(5) Let's show that $\left(f \circ f^{-1}\right)(c)=c$ for all $c \in C$.

Let $c \in C$.
Then, $f^{-1}(c)=a$ where $a \in A$ and $f(a)=c$.

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& \begin{aligned}
\left(f \circ f^{-1}\right)(c) & =f\left(f^{-1}(c)\right) \\
& =f(a) \\
& =c \\
& =i_{c}(c)
\end{aligned}
\end{aligned}
$$

(6) Let $g: C \rightarrow A$ where $g \circ f=i_{A}$

We want to show that $g=f^{-1}$.
So we must show that
$g(c)=f^{-1}(c)$ for all $c \in C$.
Let $c \in C$.
Then, $f^{-1}(c)=a$ where $a \in A$ and $f(a)=c$.
Then,

$$
\begin{aligned}
& g(c)=g(f(a))=(g \circ f \mid(a) \\
& \text { assumption } \\
& \text { oof }=i_{A}=i_{A}(a) \\
&=a \\
&=f^{-1}(c)
\end{aligned}
$$

Thus, $g=f^{-1}$.

Ex: Let $f: \mathbb{Z} x \mathbb{Z} \rightarrow \mathbb{Z} x \mathbb{Z}$ be given by $f(m, n)=(m+n, m+2 n)$

$$
\begin{aligned}
& f(4,5)=(4+5,4+2 \cdot 5)=(9,14) \\
& f(-2,1)=(-2+1,-2+2 \cdot 1)=(-1,0)
\end{aligned}
$$

Claim: f is one-to-one
proof:
Suppose $f\left(m_{1}, n_{1}\right)=f\left(m_{2}, n_{2}\right)$ where $\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right) \in \mathbb{Z} \times \mathbb{Z}$.
We need to show that $\left(m_{1}, n_{1}\right)=\left(m_{2}, n_{2}\right)$. Since $f\left(m_{1}, n_{1}\right)=f\left(m_{2}, n_{2}\right)$ we know that $\left(m_{1}+n_{1}, m_{1}+2 n_{1}\right)=\left(m_{2}+n_{2}, m_{2}+2 n_{2}\right)$. \uparrow

Thus,

$$
\begin{align*}
& m_{1}+n_{1}=m_{2}+n_{2} \tag{1}\\
& m_{1}+2 n_{1}=m_{2}+2 n_{2} \tag{2}
\end{align*}
$$

Calculating (2) - (1) we get that $n_{1}=n_{2}$.
Thus we get

$$
\begin{aligned}
& m_{1}+n_{2}=m_{1}+n_{1} \\
&=m_{2}+n_{2} \\
& n_{2}=n_{1} \operatorname{eqn}(1)
\end{aligned}
$$

Subtract n_{2} from both sides to get $m_{1}=m_{2}$.
Thus, $\left(m_{1}, n_{1}\right)=\left(m_{2}, n_{2}\right)$.
Thus, f is une-to-one.
claim 1 -

Claim $z: f$ is onto
Let $(a, b) \in \mathbb{Z} \times \mathbb{Z}$.
We must find $(m, n) \in \mathbb{Z} \times \mathbb{Z}$ where $f(m, n)=(a, b)$

That is, we need to solve

$$
\underbrace{(m+n, m+2 n)}_{f(m, n)}=(a, b)
$$

So we need to solve

$$
\begin{align*}
& m+n=a \tag{1}\\
& m+2 n=b
\end{align*}
$$

for m and n.
Calculating (2) -(1) you get that $n=b-a$.

Then,

$$
\begin{aligned}
& \text { en, } \\
& m \equiv a-n=a-(b-a)=2 a-b . \\
& \text { eqn (1) } n=b-a
\end{aligned}
$$

$$
\text { So, set }(m, n)=\underbrace{(2 a-b, b-a)}_{\begin{array}{c}
\text { this is in } \\
\text { because } a, b \in \mathbb{Z}
\end{array}} \text {. }
$$

And we have that

$$
f(m, n)=f(2 a-b, b-a)
$$

$$
\begin{aligned}
& =(2 a-b+b-a, 2 a-b+2(b-a)) \\
& =(a, b)
\end{aligned}
$$

Thus, f is unto.

