

Theorem: Let A, B be sets.
Let
$$f: A \rightarrow B$$
 be a one-to-one
function. Let $C = range(f)$.
Let $f^{-1}: C \rightarrow A$ be the inverse
of f. Then:

1) domain
$$(f^{-1}) = \operatorname{range}(f) = C$$

2) range $(f^{-1}) = \operatorname{domain}(f) = A$
2) range $(f^{-1}) = \operatorname{domain}(f) = A$
In particular, f^{-1} is onto A.
3) f^{-1} is one-to-one
4) $(f^{-1}\circ f)(a) = a$ for all $a \in A$.
50, $f^{-1}\circ f = \lambda_A$

proof; D By det of f⁻¹ we have domain $(f^{-1}) = C = range(f)$. (Z) Let's show that range (f-1)=A. we know $range(f^{-1}) \leq A$. Why is $A \leq range(f^{-1})$. By def of f⁻¹ we know Let aEA. Let c = f(a)And, $f'(c) = \alpha$ by def of f'. So, a Erange (f⁻¹). Thus, A Srange (f-1) Therefore, A=range(f).

(3) Let's show that f' is one-to-one. Suppose $f'(c_1) = f'(c_2)$ Where $C_{1}, C_{2} \in C$. We need to show that $c_1 = c_2$. Let $\alpha = f^{-1}(c_1) = f^{-1}(c_2)$. Since a=f-(c,) we know that $f(\alpha) = c_1$. Since $q = f^{-1}(c_2)$ we know that $f(\alpha) = C_2$. $S_{0}, C_{1} = f(\alpha) = C_{2}.$ Thus, f⁻¹ is one-to-one.

4 Let's show that
$$f^{-1}\circ f = i_A$$
.
Let $a \in A$.
Set $c = f(a)$.
So, $f^{-1}(c) = a$ by def of f^{-1} .
Then,
 $(f^{-1}\circ f)(a) = f^{-1}(f(a))$
 $= f^{-1}(c)$
 $= a$
 $= i_A(a)$
Thus, $(f^{-1}\circ f)(a) = i_A(a)$
for all $a \in A$.
So, $f^{-1}\circ f = i_A$

(5) Let's show that $(f \circ f^{-1})(c) = c$ for all $c \in C$. Let ce C. Then, $f^{-1}(c) = a$ where $a \in A$ and f(a) = C.

Thus, $(f \circ f^{-1})(c) = f(f^{-1}(c))$ = f(a)

= C $= \bar{\lambda}_{c}^{(c)}$

where gof=IA (G) Let $g: C \rightarrow A$ that g = f. We want to show So we must show that g(c) = f'(c) for all $c \in C$. Let $c \in C$. Then, f'(c) = a where aeA and f(a)=c. lhen, g(c) = g(f(a)) = (gof|(a))assumption = $i_A(a)$ gof = $i_A = a$ $= f^{-1}(c)$ Thus, $g = f^{-1}$.

f(4,5) = (4+5, 4+2.5) = (9, 14)f(-2,1) = (-2+1, -2+2.1) = (-1, 0)

Claim: f is one-to-one

proof: Suppose $f(m_1, n_1) = f(m_2, n_2)$ where $(m_1, n_1), (m_2, n_2) \in \mathbb{Z} \times \mathbb{Z}$. We need to show that $(m_1, n_1) = (m_2, n_2)$. Since $f(m_1,n_1) = f(m_2,n_2)$ we know $+hat(m_{1}+n_{1},m_{1}+2n_{1})=(m_{2}+n_{2},m_{2}+2n_{2}).$

Thus, $m_1 + n_1 = m_2 + n_2$ (1) $m_1 + 2n_1 = m_2 + 2n_2$ (2)

Calculating (2) - (1) we get
that
$$n_1 = n_2$$
.
Thus we get
 $m_1 + n_2 = m_1 + n_1 = m_2 + n_2$
 $n_2 = n_1$ eqn (1)
Subtract n_2 from both
sides to get $M_1 = M_2$.
Thus, $(m_1, n_1) = (m_2, n_2)$.
Thus, f is une-th-one.
Claim I -

Claim 2: fis onto Let $(a,b) \in \mathbb{Z} \times \mathbb{Z}$. We must find (m,n) EZXZ where f(m,n) = (a,b)ZXZ ZXZ (m,n) f(a,b)That is, we need to solve (m+n, m+2n) = (q, b).F(M, N)we need to solve 50

$$m+n = a 0$$

$$m+2n = b 2$$
for m and n.
$$Calculating (2) - 0 you get$$

$$that n = b - a.$$
Then,
$$m = a - n = a - (b - a) = 2a - b.$$

$$eqn (0) \quad n = b - a.$$
So, set (m,n) = (2a - b, b - a).
$$fhis is in \mathbb{Z} \times \mathbb{Z}$$
because a, b \in \mathbb{Z}
And we have that
$$f(m,n) = f(2a - b, b - a)$$

= (2a-b+b-a, 2a-b+2(b-a))= (a, b)

Thus, f is onto.

