$$
\begin{gathered}
\text { Math } 3450 \\
3 / 26 / 24
\end{gathered}
$$

Continued from last time...
$f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(m, n)=m+n$.
Question: Is f onto?
Is f 1-1?

Claim: f is onto proof:
Let $y \in \mathbb{Z}$.
Then, $(0, y) \in \mathbb{Z} x \mathbb{Z}$
and $f(0, y)=0+y$

$$
=y .
$$

Claim: f is not $1-1$
Proof: $f(3,2)=5=f(5,0)$
but $(3,2) \neq(5,0)$.
See picture above.

Theorem: Let A, B, C be sets and $f: A \rightarrow B$ and $g: B \rightarrow C$.
(1) If f and g are both onto, then $g \circ f$ is onto.
(2) If f and g are both $1-1$, then $g \circ f$ is $1-1$.
(3) If f and g are both bijections (1-1 and onto), then got is a bijection.
proof:
(1) Suppose f and g are both onto. Note $g \circ f: A \rightarrow C$.

Let $z \in C$.
Since g is onto C, there exists $y \in B$ where $g(y)=z$.
Since f is onto B, there exists $x \in A$ where $f(x)=y$.
Then

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =g(y)=z .
\end{aligned}
$$

So, got is unto $[$ because there exists $x \in A$ with $(g \circ f)(x)=z]$
(2) Suppose f and g are both 1-1.

Suppose $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$ where $x_{1}, x_{2} \in A$.
Then, $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$.
Since g is $1-1$ and

$$
g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)
$$

this implies that $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Since f is $1-1$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$ this implies that $x_{1}=x_{2}$.
So, $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$. implies that $x_{1}=x_{2}$.
Thus, got is $1-1$.
(3) Suppose f and g are both bijection ($1-1$ and onto) By 1, this implies that got will be onto.
By 2, this implies that got will be 1-1.
So, $g \circ f$ is a bijection.

Now we talk about inverse functions.

Ex: Consider the following function f.

f is one-to-one.
So we can create $f^{-1}: C \rightarrow A$ by reversing the arrows f^{-1} will be well-defined since f is 1-1 and so each element of c only has one arrow to reverse.

$$
\begin{aligned}
& \left(f^{-1} \circ f\right)(1)=f^{-1}(f(1))=f^{-1}(1)=1 \\
& \left(f^{-1} \circ f\right)(2)=f^{-1}(f(2))=f^{-1}(1729)=2 \\
& \left(f^{-1} \circ f\right)(3)=f^{-1}(f(3))=f^{-1}(\pi)=3
\end{aligned}
$$

Thus, $f^{-1} \circ f=i_{A} \quad\binom{$ the identity }{ function on $A}$

We see that

$$
\left(f \circ f^{-1}\right)(z)=z=i_{c}(z)
$$

for all $z \in C$.

Def: Let A and B be sets Let $f: A \rightarrow B$ be a one-to-one function. Let $C=$ range (t). Define the inverse function of f to be $f^{-1}: C \rightarrow A$ such that $f^{-1}(z)=x$ where $f(x)=z$.

Note: f^{-1} is well-defined because f is one-to-one. There is one and only one arrow to reverse for each z in C.

