Math 3450

$$
3 / 19 / 24
$$

Def: Let A and B be sets.
Let $f: A \rightarrow B$ be a function.
We say that f is injective or one-to-one if the following is true:
For all $a_{1}, a_{2} \in A$,
if $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$
$\left.\left.\begin{array}{c}A \\ \begin{array}{l}\text { Ie } \\ \text { you not } \\ \text { cannot } \\ \text { have } \\ \text { this }\end{array} \\ a_{2}\end{array}\right)+\begin{array}{l}B \\ a_{1}\end{array}\right)=f\left(a_{2}\right)$

Another way to define:
For all $a_{1}, a_{2} \in A$,
if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$

How to prove $f: A \rightarrow B$ is one-to-one
Let $a_{1}, a_{2} \in A$.
Suppose $f\left(a_{1}\right)=f\left(a_{2}\right)$
\therefore (proof stuff)
conclude $a_{1}=a_{2}$

Ex: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=-4 x+5$
Let's prove f is une-to-one.
pf: Suppose $x_{1}, x_{2} \in \mathbb{R}$
and $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Then, $-4 x_{1}+5=-4 x_{2}+5.7$
-5
Thus, $-4 x_{1}=-4 x_{2} \cdot \leftarrow$
So, $x_{1}=x_{2}$.

Thus, f is une-to-one

How to show $f: A \rightarrow B$ is not one-to-one

Find specific $x_{1}, x_{2} \in A$ where $x_{1} \neq x_{2}$ but $f\left(x_{1}\right)=f\left(x_{2}\right)$

Ex: Let $n \in \mathbb{Z}, n \geqslant 2$.
Define $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$
by $f(\bar{x})=(\bar{x})^{2}$.
Claim: f is well-defined. pf of claim:
(1) Given $\bar{x} \in \mathbb{Z}_{n}$ where $x \in \mathbb{Z}$ we have that

$$
\begin{aligned}
& \text { We have that } \\
& f(\bar{x})=\overline{x^{2}}=\bar{x} \cdot \bar{x}=\overline{x^{2}}
\end{aligned}
$$

Since $x \in \mathbb{Z}$ we know
$x^{2} \in \mathbb{Z}$. Thus, $f(\bar{x})=\overline{x^{2}} \in \mathbb{Z}_{n}$.
(2) Suppose $\bar{x}_{1}, \bar{x}_{2} \in \mathbb{Z}_{n}$ and $\bar{x}_{1}=\bar{x}_{2}$. Then,

$$
f\left(\bar{x}_{1}\right)=\bar{x}_{1}^{2}=\bar{x}_{2}^{2}=f\left(\bar{x}_{2}\right)
$$

mull. is well-defined in \mathbb{Z}_{n}, if $\bar{a}=\bar{c}$ and $\bar{b}=\bar{d}$, then $\bar{a} \bar{b}=\bar{c} \bar{d}$
Use with $\bar{a}=\bar{b}_{b}=\bar{x}_{1}$

$$
\text { wind } \bar{c}=\bar{d}=\bar{x}_{2}
$$

$E x: n=2, f(\bar{x})=\bar{x}^{2}$

$$
\left[\begin{array}{c}
f \text { is } \\
1-1
\end{array}\right]
$$

Ex: $n=3, f(\bar{x})=\bar{x}^{2}$

Claim: Let $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ given by $f(\bar{x})=\bar{x}^{2}$.
If $n>2$, then f is not une-to-one.
proof of claim:
Note first that since $n>2$ we know that $T \neq-1$
Why? Suppose $T=\overline{-1}$.
Then, $1 \equiv-1(\bmod n)$.
Thus, $n \mid(1-(-1))$
Ie, $n \mid z$.
Thus, $n= \pm 1, \pm 2$.
Can't happen since $n>2$

Thus, $T \neq-1$, however

$$
\begin{aligned}
& f(T)=T^{2}=T \text { and } \\
& f(T)=T^{2}=T .
\end{aligned}
$$

So, f is not $1-1$ if $n>2$.

Def: Let A and B be
sets. Let $f: A \rightarrow B$.
Let C be the range of f.
We say that f is surjective or onto B if $C=B$.

Another way to say:
f is onto B if for every $b \in B$, there exists $a \in A$ with $f(a)=b$.

Ex: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=-4 x+5$.
Let's show that f is onto \mathbb{R}.
proof:
Let $b \in \mathbb{R}$.
We must

find $a \in \mathbb{R}$,
where $f(a)=b$.
Let $a=\frac{b-5}{-4}$
Note $a \in \mathbb{R}$ and
Note $a \in \mathbb{R}$ and $\quad a=\frac{b-5}{-4}$

$$
\begin{aligned}
f(a) & =f\left(\frac{b-5}{-4}\right)=-4\left(\frac{b-5}{-4}\right)+5 \\
& =(b-5)+5=b
\end{aligned}
$$

Thus, f is unto \mathbb{R}.

How to show $f: A \rightarrow B$ is not onto Find some $b \in B$ where is no $a \in A$ with $f(a)=b$

Ex: $f: \mathbb{Z} \rightarrow \mathbb{N} \cup\{0\}$ $f(x)=x^{2}$

f is not onto:
proof: Let $b=2$.
Then, $b \in \mathbb{N} \cup\{0\}$
But is no $a \in \mathbb{Z}$ with

$$
f(a)=2
$$

Why?
If so, then $a^{2}=2$.
Then, $a= \pm \sqrt{2} \notin \mathbb{Z}$.
Thus, f is not onto because $2 \notin \operatorname{range}(f)$.

