Math 3450 3/19/24

Def: Let A and B be sets. Let f: A B be a function. We say that f is injective or one-to-one if the following is true: For all a, a2 EA, if $\alpha_1 \neq \alpha_2$, then $f(\alpha_1) \neq f(\alpha_2)$ $f(a_1) = f(a_2)$ Je YOY Cannot have this

Another way to define:
For all
$$a_1, a_2 \in A_2$$

if $f(a_1) = f(a_2)$, then $a_1 = a_2$

How to prove
$$f:A \rightarrow B$$
 is one-to-one
Let $a_1, a_2 \in A$.
Suppose $f(a_1) = f(a_2)$
: (proof stuff)
conclude $a_1 = a_2$

EX: Let F: R-> R be defined by f(x) = -4x+5Let's prove f is one-to-one. pf: Suppose X1, X2 EIR and $f(x_1) = f(x_2)$. Then, $-4x_1 + 5 = -4x_2 + 5$. Thus, $-4x_1 = -4x_2 + 5$. Thus, $-4x_1 = -4x_2 + 5$. So, $x_1 = x_2$. $x(-\frac{1}{4})$ Thus, Fis une-to-one

How to show f: A > B is not one-to-one Find specific X, X2 EA where $X_1 \neq X_2$ but $f(x_1) = f(x_2)$

Ex: Let ne Z, n72. Define f: Zn > Zn by $f(\overline{x}) = (\overline{x})^2$.

Claim: É is well-defined.

pf of claim:

where XEZ (1) Given XEZr we have that $f(\overline{\chi}) = \overline{\chi}^2 = \overline{\chi} \cdot \overline{\chi} = \chi^2.$ Since XEZ we Know $x^2 \in \mathbb{Z}$. Thus, $f(\bar{x}) = \bar{x}^2 \in \mathbb{Z}_{\mathbb{N}}$. 2 Suppose XI, XLEZn and $\overline{X_1} = \overline{X_2}$. Then, $f(\overline{X}_1) = \overline{X}_1^2 = \overline{X}_2^2 = f(\overline{X}_2)$ mult, is well-defined in $\mathbb{Z}_{n,j}$ if $\overline{\alpha} = \overline{c}$ and b=d, then 瓦ト=こよ Use with a=b=5 and Z=J=Xz Claim

 $[E_X:]$ n=2, $f(\overline{x})=\overline{x}^2$

Claim: Let f: Zn > Zn given by $f(\overline{x}) = \overline{x}^2$. If n>2, then f is not one-to-one. Proof of claim: Note first that since n>2 We know that T=-I [Why?] Suppose I = -I. Then, $I \equiv -I \pmod{n}$. Thus, n ((1-(-1)) Ie, n/Z. Thus, $n=\pm 1,\pm 2$. it happen since n>2

Let A and B be Vef: Let $f: A \rightarrow B$. sets. C be the range of f. Let We say that f is <u>surjective</u> or onto B if C = B.

Another way to say: f is onto B if for every $b \in B$, there $e \times ists a \in A$ with f(a) = b.

Ex: Let f: R>R be defined by f(x) = -4x + 5. Let's show that f is onto R. IK ĺΚ Proof: Let bell. We must

find a EIR, Scratchwork where $f(\alpha) = b$. $f(\alpha) = b$ -4a+5=bLet $a = \frac{b-5}{-4}$. $a = \frac{b-5}{-4}$ Note a EIR and $f(\alpha) = f\left(\frac{b-s}{-4}\right) = -4\left(\frac{b-s}{-4}\right) + 5$ =(b-5)+5=b. Thus, fis onto IR. _ []]_ -How to show F: A>B is not onto Find some be B where is no $\alpha \in A$ with $f(\alpha) = b$

fis not onto: proof: Let b=Z. Then, DE NUZOZ. But is no aEZ with $f(\alpha) = 2$. If so, then $\alpha^2 = 2$. Then, $\alpha = \pm \sqrt{2} \notin \mathbb{Z}$. Thus, f is not onto because ZÉrange(f). - ////-