Math 3450

$$
2 / 29 / 24
$$

Def: A partition of a set S is a family of sets A where
(1) every $A \in A$ satisfies $A \subseteq S$,
(2) $\bigcup_{A \in A} A=S$
(3) If $A, B \in A$ and $A \neq B$, then $A \cap B=\phi$.

$$
\begin{aligned}
& \text { Ex: } S=\{1,2,3,4,5,6\} \\
& A=\{\underbrace{\{1,3,5\}}_{A_{1}}, \underbrace{\{2,6\}}_{A_{2}}, \underbrace{\{4\}\}}_{A_{3}}
\end{aligned}
$$

(1) $A_{1} \subseteq S, A_{2} \subseteq S, A_{3} \subseteq S$
(2) $\bigcup_{A \in A} A=A_{1} \cup A_{2} \cup A_{3}=S$
(3) $A_{1} \cap A_{2}=\phi$

$$
A_{1} \cap A_{3}=\phi
$$

$$
A_{2} \cap A_{3}=\phi
$$

Thus, A is a partition of S

Ex:

$$
\begin{aligned}
& E x_{i} \cdot \\
& S=\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
\end{aligned}
$$

Consider the equivalence classes modulo $n=3$. They are

$$
\overline{0}=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}
$$

$$
\begin{aligned}
& T=\{\ldots,-8,-5,-2,1,4,7, \ldots\} \\
& \overline{2}=\{\ldots,-7,-4,-1,2,5,8, \ldots\}
\end{aligned}
$$

The set of equivalence classes is a partion of \mathbb{Z}.

$$
A=\mathbb{Z}_{3}=\{\overline{0}, \overline{1}, \overline{2}\}
$$

Theorem Let S be a non-empty set. Let \sim be an equivalence relation on S. Then the set of equivalence classes

$$
S / \sim=\{\bar{a} \mid a \in S\}
$$

is a partition of S.
Ex: when \sim is $\bmod 3$ then $S / \sim=\mathbb{Z}_{3}=\{\overline{0}, T, \bar{Z}\}$
proof:
(1) Let $\bar{a} \in S / \sim$ where $a \in S$.

Then,

$$
\bar{a}=\{b \mid b \in S \text { where } a \sim b\} \subseteq S
$$

(2) We have that

$$
\begin{aligned}
& S=\bigcup_{a \in S}\{a\} \subseteq \bigcup_{a \in S} \bar{a}=\bigcup_{\Delta \bar{a} \in S} \bar{a} \subseteq S \\
& \bigcup_{a \in S}^{\square} \downarrow a \in S \quad \& \bar{a} \in S / \sim \\
& \begin{array}{l}
\text { super } \\
\text { duper } \\
\operatorname{hm} m \\
a \in \bar{a}
\end{array} \quad S / \sim=\{\bar{a} \mid a \in S\}
\end{aligned}
$$

Thus, $S=\bigcup_{\bar{a} \in S / \sim} \bar{a}$.
(3) By the super-duper equivalence class theorem, if $a, b \in S$ and $\bar{a} \neq \bar{b}$, then $\bar{a} \wedge \bar{b}=\phi$

Theorem
Let S be a non-empty set.
Let A be a partition of S.
Define a relation \sim on S by the following:
Given $a, b \in S$, then $a \sim b$ if and only if there exists $A \in A$ where $a \in A$ and $b \in A$.

Then:
(1) \sim is an equivalence relation on S
(2) $5 / \sim=A$
proof: See notes from F/9-10/2

HF 3
(3) $S=\mathbb{Z}$
$x \sim y$ means $21(x+y)$
(a) List 3 integers related to $x=4$

$$
\begin{aligned}
& 2 \mid(4+0) \longrightarrow 4 \sim 0 \\
& 2 \mid(4+2) \longrightarrow 4 \sim 2 \\
& z \mid \underbrace{4+(-10)}_{-6} \rightarrow 4 \sim(-10)
\end{aligned}
$$

(b) Prove \sim is an equivalence relation on $S=\mathbb{Z}$.
(reflexive) Let $a \in \mathbb{Z}$.

Then,

$$
a+a=2 a
$$

So, $z \mid(a+a)$.
Thus, $a \sim a$.
(Symmetric) Let $a, b \in \mathbb{Z}$ where $a \sim b$.
Since $a \sim b$ we know $2 \mid(a+b)$.
Thus, $z \mid(b+a)$.
Hence, $b \sim a$.
(transitive) Let $a, b, c \in \mathbb{Z}$ where $a \sim b$ and $b \sim c$.
This gives $2 \mid(a+b)$ and 2$)(b+c)$
Thus, $a+b=2 k$ and $b+c=2 l$
where $k, l \in \mathbb{Z}$.
It follows that

$$
\begin{aligned}
& \text { follows that } \\
& \begin{aligned}
a+c & =(2 k-b)+(2 l-b) \\
& =2 k+2 l-2 b \\
& =\underbrace{2(k+l-b)}\left({ }^{\text {this is in }} \text { since } k, l, b \in \mathbb{Z}\right.
\end{aligned}
\end{aligned}
$$

Thus, $2 \(a+c)$.
So, $a \sim C$.
(b)
(c/d) Find the equivalence classes

$$
\begin{aligned}
\bar{O} & =\{y \mid y \in \mathbb{Z} \text { where } \underbrace{2 \mid(0+y)}_{0 \sim y}\} \\
& =\{y \mid y \in \mathbb{Z} \text { where } 2 \mid y\} \\
T & =\{y \mid y \in \mathbb{Z} \text { where } \underbrace{z \mid(1+y)}_{1 \sim y}\} \\
& =\{\ldots,-5,-3,-1,1,3,5,7, \ldots\}
\end{aligned}
$$

$H W 2$
(14) (b) Let A and B be sets. Prove: $P(A) \cup P(B) \subseteq P(A \cup B)$
proof:
Let $X \in P(A) \cup P(B)$.
So either $X \in P(A)$ or $X \in P(B)$.
Thus, either $X \subseteq A$ or $X \subseteq B$.
This implies that either

$$
\begin{aligned}
& \text { implies that either } \\
& X \subseteq A \subseteq A \cup B \text { or } X \subseteq B \subseteq A \cup B \text {. }
\end{aligned}
$$

Thus, $X \subseteq A \cup B$.

$$
\begin{aligned}
& \text { Thus, } x=P(A \cup B) \text {. } \\
& \text { So, } x \in P(
\end{aligned}
$$

