Math 3450

$$
2 / 22 / 24
$$

Recall: Let $n, x \in \mathbb{Z}$ with $n \geq 2$.
Then,

$$
\bar{x}=\{y \mid y \in \mathbb{Z} \text { and } \underbrace{y \equiv x(\bmod n)}_{\substack{\text { means: } \\ n \mid(y-x)}}\}
$$

$\mathbb{Z}_{n} \leftarrow$ set of equivalence classed modulo n

$$
\begin{aligned}
& \underline{E x}: n=3 \\
& \overline{\overline{0}}=\{y \mid y \in \mathbb{Z}, y \equiv 0(\bmod 3)\} \\
&=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\} \\
& \bar{T}=\{y \mid y \in \mathbb{Z}, y \equiv 1(\bmod 3)\} \\
&=\{\ldots,-8,-5,-2,1,4,7,10, \ldots\}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{z}=\{y \mid y \in \mathbb{Z}, y \equiv 2(\bmod 3)\} \\
& =\{\ldots,-7,-4,-1, z, 5,8,11, \ldots\} \\
& \mathbb{Z}_{3}=\{\overline{0}, \overline{1}, \overline{2}\}
\end{aligned}
$$

Theorem: (Equivalence classes) $\left.\begin{array}{c}\text { modulo } n\end{array}\right)$
Let $n \in \mathbb{Z}$ with $n \geqslant 2$.
Then

These elements are all distinct.
That is, if $0 \leq x \leq y \leq n-1$ and $\bar{x}=\bar{y}$, then $x=y$.
proof: Let

$$
S=\{\overline{0}, T, \overline{2}, \ldots, \overline{n-1}\} .
$$

We want to show that

$$
\mathbb{Z}_{n}=S .
$$

Note that $S \subseteq \mathbb{Z}_{n}$ because it consists of equivalence classes modulo n.
We just need to show that $\mathbb{Z}_{n} \subseteq S$.
Let $\bar{z} \in \mathbb{Z}_{n}$ where $z \in \mathbb{Z}$. Divide z by n to get

$$
z=n q+r
$$

where $q, r \in \mathbb{Z}$ and $\underbrace{0 \leqslant r<n}_{\text {same as }}$ $0 \leqslant r \leqslant n-1$
Then, $z-r=n q$.
So, $n \mid(z-r)$.
Thus, $z \equiv r(\bmod n)$.
Hence, $\bar{z}=\bar{r}$.
Thus, $\bar{z} \in S=\{\overline{0}, \tau, \ldots, \overline{n-1}\}$
because $0 \leq r \leq n-1$.
Hence $\mathbb{Z}_{n} \leq S$.
So, $\mathbb{Z}_{n}=S$.
Why are all the elements
of $\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}$ distinct?
Suppose $0 \leq x \leq y \leq n-1$
with $\bar{x}=\bar{y}$
Let's show this implies $x=y$.
Since $\bar{x}=\bar{y}$ we know that $x \equiv y(\bmod n)$.
Thus, $n \mid(y-x)$.
\square

Hence $y-x=n k$ for
some $k \in \mathbb{Z}$.
Note $0 \leq y-x$ from above and $n \geqslant 2>0$, thus $k \geqslant 0$.
Since $x \leq y \leq n-1$ by
subtracting x we get

$$
0 \leq y-x \leq n-1-x .
$$

Since $0 \leq x$ we know

$$
n-1-x<n
$$

Thus, $0 \leqslant y-x<n$
Summary so far:

$$
\begin{aligned}
& y-x=n k \text { with } k \geqslant 0 \\
& \text { and } 0 \leq y-x<n
\end{aligned}
$$

Let's show $k=0$.
Suppose instead that $k>0$.
If so, then

$$
\begin{aligned}
0 \leqslant y-x<n & \leqslant n k=y-x \\
& \begin{array}{l}
\text { assuming } \\
k>0 \\
\text { ie } k \geqslant 1
\end{array}
\end{aligned}
$$

But then $y-x<y-x$ which cant happen.
Hence $k=0$.
So, $y-x=n k=n(0)=0$.
Thus, $y=x$.
FINITe

Ex:

$$
\begin{aligned}
& \mathbb{Z}_{2}=\{\overline{0}, T\} \\
& \mathbb{Z}_{3}=\{\overline{0}, \bar{T}, \overline{2}\} \\
& \mathbb{Z}_{4}=\{\overline{0}, \bar{T}, \overline{2}, \overline{3}\} \\
& \mathbb{Z}_{5}=\{\overline{0}, \bar{T}, \overline{2}, \overline{3}, \overline{4}\}
\end{aligned}
$$

HF 3
(9) Let

$$
\begin{aligned}
S & =\mathbb{Z} \times(\mathbb{Z}-\{0\}) \\
& =\{(2,-1),(-3,5),(10,21), \ldots\}
\end{aligned}
$$

think $\frac{2}{-1}$ think $\frac{-3}{5}$ think $\frac{10}{21}$
Define $(a, b) \sim(c, d)] \begin{aligned} & \frac{\text { idea; }}{\frac{a}{b}=\frac{c}{d}} \\ & a f f\end{aligned}$ to mean $a d=b c . \int \begin{aligned} & \text { af } \\ & a d=b c\end{aligned}$
(a) Is $(1,5) \sim(-3,-15)$?

Check: $(1)(-15)=(5)(-3)$

Yes, $(1,5) \sim(-3,-15)$
(b) Is $(-1,1) \sim(2,3)$?

No because $(-1)(3) \neq(1)(2)$.
(c) Prove that \sim is an equivalence relation on S.
proof:
(reflexive)
Let $(a, b) \in S$.
Then, $(a, b) \sim(a, b)$
because $a b=b a$.
(symmetric)

Let $(a, b),(c, d) \in S$.
Suppose $(a, b) \sim(c, d)$.
Then, $a d=b c$.
Thus, $c b=d a$.
So, $(c, d) \sim(a, b)$.
(transitivity)
Let $(a, b),(c, d),(e, f) \in S$.
Then, $b \neq 0, d \neq 0, f \neq 0$.
Suppose $(a, b) \sim(c, d)$
and $(c, d) \sim(e, f)$.
Then, $a d=b c$ and $c f=d e$.

Hence,

$$
\text { Hence, } a d=b c=\underbrace{b\left(\frac{d e}{f}\right)}_{\substack{o k \text { since } \\ f \neq 0}}=\frac{b d e}{f}
$$

Since $d \neq 0$ we can divide by d to get $a=\frac{b e}{f}$.
Thus, $a f=b e$.
Hence $(a, b) \sim(e, f)$.

