$$
\begin{aligned}
& \text { math } 3450 \\
& 2 / 15 / 24
\end{aligned}
$$

Def: Let $a, b \in \mathbb{Z} \leftarrow$ integers We say that a divides b if there exists $k \in \mathbb{Z}$ where $b=a k$. If a divides b then we write a / b.
If a does not divide b then we write $a \times b$.

Ex: $3 / 12$ because $12=3 \cdot \frac{4}{4}$

Ex: $(-4) / 12$ because

$$
12=(-4) \underbrace{(-3)}_{k}
$$

Ex: 12×3 because the only sol to $3=12 \cdot k$ would be $k=\frac{3}{12}=\frac{1}{4}$ and $\frac{1}{4} \notin \mathbb{Z}$

Def: Let $a, b, n \in \mathbb{Z}$ with $n \geqslant 2$. We say that a and b are congruent modulo n if $n \mid(a-b)$. If this is the case then we write $a \equiv b(\bmod n)$ and if not then we write $a \neq b(\bmod n)$.

Ex: Let $n=3$.
Q:
Is -2 congruent to 10 modulo $3 ?$
We have

$$
\begin{aligned}
& \text { Ne have } \\
& (-2)-(10)=-12=3 \cdot(-4)
\end{aligned}
$$

So, $3 \mid((-2)-10)$.
Thus, $-2 \equiv 10(\bmod 3)$.
 which is divisive by 3

Q: Is 3 congruent to 127 modulo 3?

We have

$$
\begin{aligned}
& \text { We have } \\
& 3-127=-124
\end{aligned}
$$

And $3 x-124$.

$=-124$| $3 \longdiv { 4 1 }$ |
| :---: |
| $\frac{324}{\frac{-12}{04}}$ |
| $\frac{-3}{1}$ |

Thus, $3 \neq 127(\bmod 3)$

distance is 124 which is not divisible by 3

Ex: Is $4 \equiv 18(\bmod 7) ?$
Yes, because

$$
4-18=-14=7 \cdot(-2)
$$

Ie, $7 \mid(4-18)$.

Theorem: Let $n \in \mathbb{Z}$ with $n \geqslant 2$. Then, $\bmod n$ is an equivalence relation on \mathbb{Z}. That is,
(1) (reflexive)
$a \equiv a(\bmod n)$ for all $a \in \mathbb{Z}$.
(2) (symmetric)

If $a, b \in \mathbb{Z}$ and $a \equiv b(\bmod n)$, then $b \equiv a(\bmod n)$.
(3) (transitive)

If $a, b, c \in \mathbb{Z}$ and
$a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$.
proof:
(1) Let $a \in \mathbb{Z}$.

We have

$$
a-a=0=n \cdot 0
$$

Thus, $n \mid(a-a)$.
Hence, $a \equiv a(\bmod n)$.
(2) Let $a, b \in \mathbb{Z}$.

Suppose $a \equiv b(\bmod n)$.
Then, $n \backslash(a-b)$.
That is, $a-b=n k$ where $k \in \mathbb{Z}$.
Multiply by -1 gives

$$
b-a=n \underbrace{(-k)}_{-k \in \mathbb{Z}} \text { since } k \in \mathbb{Z}
$$

Hence $n \mid(b-a)$
Therefore $b \equiv a(\bmod n)$.
(3) Let $a, b, c \in \mathbb{Z}$.

Suppose $a \equiv b(\bmod n)$
and $b \equiv c(\bmod n)$.
Then, $n \mid(a-b)$ and $n \mid(b-c)$.
Thus, $a-b=n k_{1}$ and $b-c=n k_{2}$
where $k_{1}, k_{2} \in \mathbb{Z}$.
It follows that

$$
\begin{aligned}
& \text { it follows that } \\
& \begin{aligned}
a-c & =\left(b+n k_{1}\right)-\left(b-n k_{2}\right) \\
& =n k_{1}+n k_{2} \\
& =n \underbrace{\left(k_{1}+k_{2}\right)}_{k_{1}+k_{2} \in \mathbb{Z}} \text { since } k_{1}, k_{2} \in \mathbb{Z}
\end{aligned}
\end{aligned}
$$

Thus, $n \mid(a-c)$
So, $a \equiv c(\bmod n)$

Def: Let $n \in \mathbb{Z}$ with $n \geqslant 2$. We denote the set of equivalence classes modulo n as \mathbb{Z}_{n}.

Previously, if \sim was an equivalence relation on S, then the set of equivalence classes was denoted S/~

Some people write $\mathbb{Z} / n \mathbb{Z}$ instead of \mathbb{Z}_{n} 4550

Ex: Let $n=3$.

$$
\begin{aligned}
\bar{O} & =\{x \in \mathbb{Z} \mid x \equiv 0(\bmod 3)\} \\
& =\{\ldots,-9,-6,-3,0,3,6,9, \ldots\} \\
T & =\{x \in \mathbb{Z} \mid x \equiv 1(\bmod 3)\} \\
& =\{\ldots,-8,-5,-2,1,4,7,10, \ldots\} \\
\bar{Z} & =\{x \in \mathbb{Z} \mid x \equiv 2(\bmod 3)\} \\
& =\{\ldots,-10,-7,-4,-1,2,5,8, \ldots\}
\end{aligned}
$$

By the super-duper equiv. relation

$$
\overline{3}=\overline{0}=\overline{6}=\overline{9}=\overline{-9}=\ldots
$$

$$
\begin{aligned}
& T=\overline{-8}=T=\overline{7}=\ldots \\
& \overline{2}=\overline{-4}=\overline{-1}=\overline{5}=\overline{8}=\ldots
\end{aligned}
$$

Thus, $\mathbb{Z}_{3}=\{\overline{0}, \pi, \overline{2}\}$
set of equivalence classes mod 3
We partitioned \mathbb{Z} into 3 pieces:

