Math 3450 2/15/24

Pef: Let a, b E Z (integers) it We say that a divides b there exists REZ where b=ak. If a divides b then we write a b. IF a does not divide b then we write atb. 3/12 because 12=3.4 Ex: $E_{X}: (-4)|_{1Z} because |_{1Z} = (-4)(-3)$

EX: 12X3 because the only sol to 3=12.R Would be $k = \frac{3}{12} = \frac{1}{4}$ and 4 € Z Def: Let a,b,n EZ with n>2. We say that a and b are Congruent modulo n if n (a-b). If this is the case then we write $a \equiv b \pmod{n}$ and if not then we write a \$ b (mod n).

 $E_X: Let n = 3.$

We have

$$(-2) - (10) = -12 = 3 \cdot (-4)$$

So, $3 | ((-2) - 10)$.
Thus, $-2 = 10 \pmod{3}$.

Q: Is 3 congruent to 127 modulo 3 ? 4 We have 3 - 127 = -124And 3X-124. 3 \$ 127 (mod 3) $\int hus,$ 2 +distance is 124 which is not divisible by 3

Is 4=18 (mod 7) ? EX:

les, because $4 - 18 = -14 = 7 \cdot (-2)$. Ie, 7 (4-18).

X = Y (mod n) means proof: DLet a EZ. X - Y = nRfor some REZ We have $\alpha - \alpha = O = N \cdot O.$ Thus, $n(\alpha-\alpha)$. Hence, a = a (mod n). 2) Let a, b E 7/. Suppose a = b(mod n). Then, n|(a-b). That is, a-b=nk where $k\in\mathbb{Z}$. Multiply by -1 gives $b-\alpha=n(-k).$ -REZ since REZ

Hence
$$n | (b-a)$$
.
Therefore $b \equiv a \pmod{n}$.
3) Let $a, b, c \in \mathbb{Z}$.
Suppose $a \equiv b \pmod{n}$.
and $b \equiv c \pmod{n}$.
Then, $n | (a-b)$ and $n | (b-c)$.
Then, $n | (a-b)$ and $n | (b-c)$.
Thus, $a-b \equiv nk_1$ and $b-c \equiv nk_2$
Where $k_1, k_2 \in \mathbb{Z}$.
If follows that
 $a-c \equiv (b+nk_1) - (b-nk_2)$
 $\equiv nk_1 + nk_2$
 $\equiv n (k_1 + k_2)$
 $k_1 + k_2 \in \mathbb{Z}$ since $k_1, k_2 \in \mathbb{Z}$.

Thus, $n \mid (\alpha - c)$ Su, a E C (mod n).

neZ with n>2. Def: Let We denote the set of equivalence classes modulo n as Zn.

Previously, if ~ Was an equivalence relation on S, then the set of, equivalence classer was denoted S/~

Some people write Z/nZ instead of Zn

4550

 E_X : Let n=3. $\langle \textcircled{0} - \textcircled{0}$ -10-9-8-7-6-5-4-3-2-1012345678910 $\overline{O} = \{ X \in \mathbb{Z} \mid X = O(m \circ d 3) \}$ $= \{2, ..., -9, -6, -3, 0, 3, 6, 9, ...\}$ $T = \{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{3} \}$ $= \{ \{1, 2, 5, -2, 1, 4, 7, 10, ... \}$ $Z = \{ X \in \mathbb{Z} \mid X \equiv Z \pmod{3} \}$ $= \{2, 2, 2, -10, -7, -4, -1, 2, 5, 8, ...\}$

By the super-duper equiv. relation 3=0=6=9=-9=...

 $\overline{1 = -8} = 1 = \overline{7} = ...$ z = -4z - 1 = S = 8 = ... $Z_{3} = 20, T, Z_{3}$ Thus, (set of equivalence) classes mod 3 We partitioned Z into 3 pieces: