$$
\begin{aligned}
& \text { Math } 3450 \\
& 2 / 13 / 24
\end{aligned}
$$

$E x: S=\{1,2,3\}$

$$
\begin{aligned}
& \sim=\{(1,1),(2,2),(3,3),(1,3),(3,1)\} \\
& \begin{array}{ccccc}
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\mid \sim 1 & 2 \sim 2 & 3 \sim 3 & 1 \sim 3 & 3 \sim 1
\end{array}
\end{aligned}
$$

Reflexive? $[x \sim x$ for all $x \in S]$
Yes because $\mid \sim 1,2 \sim 2,3 \sim 3$.
Symmetric? [If $x \sim y$, then $y \sim x$]
We have $1 \sim 1$ and also $1 \sim 1$.
We have $2 \sim 2$ and also $2 \sim 2$.
We have $3 \sim 3$ and alse $3 \sim 3$.
We have $1 \sim 3$ and also $3 \sim 1$.
We have $3 \sim 1$ and also $1 \sim 3$.
Transitive [If $x \sim y$ and $y \sim z$, then $x \sim z$]
We have $|\sim|$ and $\mid \sim 3$, and also $\mid \sim 3$.
We have $|\sim|$ and $\mid \sim 1$, and also $\mid \sim 1$.
we have $2 \sim 2$ and $2 \sim 2$, and also $2 \sim 2$.
We have $3 \sim 3$ and $3 \sim 3$, and also $3 \sim 3$.
we have $3 \sim 3$ and $3 \sim 1$, and also. $3 \sim 1$. We have $1 \sim 3$ and $3 \sim 3$, and also $1 \sim 3$ we have $1 \sim 3$ and $3 \sim 1$, and also $1 \sim 1$. We have $3 \sim 1$ and $1 \sim 3$, and also $3 \sim 3$. We have $3 \sim 1$ and $|\sim|$, and also $3 \sim 1$.
Thus, \sim is an equivalence relation on $S=\{1,2,3\}$.
Let's find the equivalence classes.

$$
\begin{aligned}
& \overline{1}=\{x \in S| | \sim x\}=\{1,3\} \\
& \overline{2}=\{x \in S \mid 2 \sim x\}=\{2\} \\
& \overline{3}=\{x \in S \mid 3 \sim x\}=\{1,3\}
\end{aligned}
$$

Super-duper Eqvivalence relation theorem

Let \sim be an equivalence relation on a set S.
Let $x, y \in S$.
Then:
(1) $x \in \bar{x}$
(2) $\bar{x}=\bar{y}$ iff $x \in \bar{y}$
(3) $\bar{x}=\bar{y}$ iff $x \sim y$
(4) $\bar{x} \cap \bar{y}=\phi$ iff $x \psi y$
(1) We know $\bar{x}=\{y \in S \mid x \sim y\}$ Since \sim is reflexive, $x \sim x$, above
(1) $z \in \overline{2}$

$$
\bar{z}=\{2\}
$$

(2) / 3)

$$
\begin{aligned}
& T=\{1,3\}=\overline{3} \\
& 1 \in \overline{3} \\
& 3 \in T \\
& 1 \sim 3,3 \sim 1
\end{aligned}
$$

(4)

$$
\begin{align*}
& T=\{1,3\} \\
& \overline{2}=\{2\} \\
& T \cap \overline{2}=\phi \\
& 1 \times 2 \tag{1}
\end{align*}
$$

So, $x \in \bar{x}$
(2) (A) Suppose $\bar{x}=\bar{y}$.

By $1, x \in \bar{x}$.

Thus, since $x \in \bar{x}$ and $\bar{x}=\bar{y}$ we get $x \in \bar{y}$.
(\langle) Now suppose $x \in \bar{y}$.
Why is $\bar{x}=\bar{y}$?

$$
\bar{x}=\{b \in S \mid x \sim b\}
$$

Claim 1: $\bar{x} \leqslant \bar{y}$
pf of claim 1: Let $z \in \bar{x} \&$
Thus, $x \sim z$.

$$
\bar{y}=\{b \in S \mid y \sim b\}
$$

Also, since $x \in \bar{y}$ we know $y \sim x$.
Since $y \sim x$ and $x \sim z$, then by transitivity we get $y \sim z$. Thus, $z \in \bar{y}$.
$\operatorname{Claim} 2: \bar{y} \subseteq \bar{x}$
pf of claim 2: Let $z \in \bar{y}$.
Then, $y \sim z$.
Since $x \in \bar{y}$ we know $y \sim x$. Since $y \sim x$, by reflexivity
we get $x \sim y$.
Since $x \sim y$ and $y \sim z$, by transitivity we get $x \sim z$.
Since $x \sim z$ we know $z \in \bar{x}$
Claim 2

By claim 1 and claim 2
we get $\bar{x}=\bar{y}$,
(3)
(\Leftrightarrow) Suppose $\bar{x}=\bar{y}$.
Then by z we get $x \in \bar{y}$.
Thus, $y \sim x$.
By symmetry we get $x \sim y$.
(ß) Suppose $x \sim y$.
By def, get $y \in \bar{x}$
By 2 we get $\bar{y}=\bar{x}$.
(4) Instead of proving

$$
\text { " } \bar{x} \cap \bar{y}=\phi \text { iff } x x y \text { " }
$$

let's prove the contrapositive

So, $z \in \bar{x}$ and $z \in \bar{y}$.
Then, $x \sim z$ and $y \sim z$.
By symmetry we get $z \sim y$.
Thus, since $x \sim z$ and $z \sim y$, by transitivity we get $x \sim y$.
(B) Suppose $x \sim y$.

Then by 3, we get $\bar{x}=\bar{y}$.
By 1, $x \in \bar{x}$.
So, since $\bar{x}=\bar{y}$ and $x \in \bar{x}$
we have $x \in \underbrace{\bar{x} \cap \bar{y}}_{\text {this is just }}$.
So, $\bar{x} \cap \bar{y} \neq \phi$.

Workshop
HF 2 (9)(c)
Calculate $\bigcup_{n=3}^{\infty} A_{n}$ and $\bigcap_{n=3}^{\infty} A_{n}$
where $A_{n}=\left(2+\frac{1}{n}, n\right) \stackrel{\begin{array}{c}\text { interval } \\ \text { in } \mathbb{R}\end{array}}{\substack{\text { and } \\ \text { and }}}$

$$
\begin{aligned}
& A_{3}=\left(2+\frac{1}{3}, 3\right) \\
& A_{4}=\left(2+\frac{1}{4}, 4\right) \\
& A_{5}=\left(2+\frac{1}{5}, 5\right)
\end{aligned} \quad \bigcup_{n=3}^{\infty} A_{n}=(2, \infty)
$$

HF 3
(1) $(a) \quad S=\mathbb{R}$
$a \sim b$ means $a \leq b$
Ex: $1 \sim 2$ since $\mid \leq 2$
$2 x-1$ since $2 \neq-1$
Reflexive? Let $x \in \mathbb{R}$
Then, $x \leq x$
So, $x \sim x$.
Symmetric? We know $1 \sim 2$ since $1 \leq 2$. But $2 \psi 1$ since $2 \neq 1$. So, \sim is not symmetric

Transitive! Let $x, y, z \in \mathbb{R}$.
Suppose $x \sim y$ and $y \sim z$.
Then, $x \leq y$ and $y \leq z$.
This implies $x \leq z$.
$S 0, x \sim z$.

HF 2
(6) Show $A \times(B \cap C)=(A \times B) \cap(A \times C)$

$$
\begin{aligned}
& A=\{1,2\}, B=\{3,4\}, C=\{4,5\} \\
& B \cap C=\{4\} \\
& A \times(B \cap C)=\{(1,4),(2,4)\} \\
& A \times B=\{(1,3),(1,4),(2,3),(2,4)\} \\
& A \times C=\{(1,4),(1,5),(2,4),(2,5)\} \\
& (A \times B) \cap(A \times C)=\{(1,4),(2,4)\}
\end{aligned}
$$

pf:
(\Leftrightarrow) Let $y \in A x(B \cap C)$.
So, $y=(m, n)$ where $m \in A$ and $n \in B \cap C$.
So, $m \in A$ and $n \in B$ and $n \in C$.
Thus, $(m, n) \in A \times B$
and $(m, n) \in A \times C$.

