Math 3450 2/13/24

We have
$$3 \sim 3$$
 and $3 \sim 1$, and also $3 \sim 1$.
We have $1 \sim 3$ and $3 \sim 3$, and also $1 \sim 3$.
We have $1 \sim 3$ and $3 \sim 1$, and also $1 \sim 1$.
We have $3 \sim 1$ and $1 \sim 3$, and also $3 \sim 3$.
We have $3 \sim 1$ and $1 \sim 3$, and also $3 \sim 3$.
We have $3 \sim 1$ and $1 \sim 1$, and also $3 \sim 1$.
Thus, n is an equivalence
relation on $S = \{1, 2, 3\}$.
Let's find the equivalence classes.
 $T = \{x \in S \mid 1 \sim x\} = \{1, 3\}$
 $\overline{2} = \{x \in S \mid 2 \sim x\} = \{2, 3\}$
 $\overline{3} = \{x \in S \mid 3 \sim x\} = \{1, 3\}$
 $\overline{3} = \{x \in S \mid 3 \sim x\} = \{1, 3\}$
 $\overline{13}$
 $\overline{3} = \{x \in S \mid 3 \sim x\} = \{1, 3\}$

Super-duper Equivalence relation theorem Ex from) abose Let ~ be an equivalence $1 Z \in \overline{Z}$ relation on a set S. 2=327 Let X, YES. Then: 2/3 $() \times \in X$ $T = \{1, 3\}^2 = 3$ 2 x=y iff xEy IEZ 3 x=y iff x~y 361 ا~3,3~۱ $(\underline{\Psi} \times n \underline{Y} = \phi \text{ iff } \times \psi \underline{Y}$ 4) $T = \{1, 3\}$ proof: $\overline{2} = \{2\}$ DWe Know X={yES X~y} $\overline{1}\overline{1}\overline{2} = \phi$ 142 Since ~ is reflexive, x~x. So, XEX. 2 (=>) Suppose X = y. By 1, XEX.

Thus, since
$$x \in \overline{x}$$
 and $\overline{x} = \overline{y}$ we get $x \in \overline{y}$.
Why is $\overline{x} = \overline{y} \xrightarrow{\mathbb{R}}$ $\overline{x} = \{b \in S \mid x \sim b\}$
Claim 1: $\overline{x} \in \overline{y}$
 \overline{y} $\overline{y} = \{b \in S \mid x \sim b\}$
 \overline{y} $\overline{y} = \{b \in S \mid y \sim b\}$
Also, since $x \in \overline{y}$ we know $y \sim x$.
Since $y \sim x$ and $x \sim \overline{z}$, then
by transitivity we get $y \sim \overline{z}$.
Thus, $\overline{z} \in \overline{y}$.
 \overline{z}
 $\overline{y} = \{b \in S \mid y \sim b\}$
 $\overline{y} = \{b \in S \mid y \sim b\}$
 $\overline{y} = \{b \in S \mid y \sim b\}$
 $\overline{y} = \{b \in S \mid y \sim b\}$
 $\overline{y} = \{b \in S \mid y \sim b\}$
 $\overline{y} = \{b \in S \mid y \sim b\}$
 $\overline{y} = \{b \in S \mid y \sim b\}$
 $\overline{y} = \{b \in S \mid y \sim b\}$
 $\overline{y} = \{b \in S \mid y \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \sim b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 $\overline{y} = \{b \in S \mid x \rightarrow b\}$
 \overline{y}

we get $X \sim Y$. Since X~y and y~Z, by transitivity we get X~Z. Since X~2 we know ZEX (Claim Z)

By claim I and claim 2 We get x = y.

3 (2) Suppose x=y. Then by Z we get XEY. Thus, y~X. By symmetry we get X~y.

(G) Suppose X~y. By def, get yEX 2 we get $\overline{y} = \overline{x}$. js y 3) of proving (4) Instead " $xny = \phi$ iff $x \neq y$ " let's prove the contrapositive iff x~y" PitfQ is equivalent to $(x \times ny \neq \phi)$ 7piff7Q Pf: (=>) Suppore Q - P - Q P iff Q - P iff 7Q P \overline{x} $n\overline{y} \neq \phi$. TFF F Then there FF TTF exists F TT T T ZEXNY.

Su, ZEX and ZEY. Then, X~Z and Y~Z. By symmetry we get Z~Y. Thus, since X~Z and Z~Y, by transitivity we get X~y. (G) Suppose X~Y. Then by 3, we get $\overline{x} = \overline{y}$. By I, XEX. So, since $\overline{x} = \overline{y}$ and $x \in \overline{x}$ we have XEXNY. this is just X $S_0, \overline{X} \cap \overline{Y} \neq \phi.$ (4)

Workshop
HW 2 (9)(c)
Calculate
$$\bigcup_{n=3}^{\infty} A_n$$
 and $\bigcap_{n=3}^{\infty} A_n$
where $A_n = (2 \pm \frac{1}{n}, n)$ interval
in \mathbb{R}
 $A_3 = (2 \pm \frac{1}{3}, 3)$
 $A_4 = (2 \pm \frac{1}{3}, 3)$
 $A_5 = (2 \pm \frac{1}{5}, 5)$
 $A_5 = (2 \pm \frac{1}{5}, 5)$
 $A_7 = A_3 = (\frac{2}{3}, 3)$
 $A_7 = A_7 = (\frac{2}{3}, 3)$
 $A_7 = (\frac{2}{3}, 3)$

Hw 3
(1) (a)
$$S = IR$$

(a~b means $a \le b$)
Ex: $1 \sim 2$ since $1 \le 2$
 $2 \prec -1$ since $2 \le -1$
Reflexive? Let $X \in IR$
Then, $X \le X$
Symmetric? We know $1 \sim 2$ since

We know $1 \sim 2$ since $| \leq 2$. But $2 \sim 1$ since $2 \notin |$. So, \sim is not symmetric

Transitive! Let X, Y, ZEIR. Suppose X~y and y~Z. Then, XSY and YZZ. This implies X ≤ Z. So, X~Z,

(HW 2) (G) Show Ax(Bnc) = (AxB)n(Axc) $A = \{1, 2\}, B = \{3, 4\}, C = \{4, 5\}$ $BNC = \{4\}$ $A \times (B \land c) = \{(1, 4), (2, 4)\} \in$ $A \times B = \{(1,3), (1,4), (2,3), (2,4)\}$ $AxC = \{(1, 4), (1, 5), (2, 4), (2, 5)\}$ $(A \times B) \cap (A \times C) = \{(1, 4), (2, 4)\} \ll$

$$\begin{array}{l} \underline{pf};\\ (\exists) \ Let \ y \in Ax(BAC).\\ So, \ y = (m,n) \ where\\ m \in A \ and \ N \in BAC.\\ So, \ m \in A \ and \ n \in B \ and \ n \in C.\\ Thus, \ (m,n) \in A \times B\\ and \ (m,n) \in A \times C. \end{array}$$