$$
\begin{aligned}
& \text { Math } 3450 \\
& 1 / 30 / 24
\end{aligned}
$$

Ex: Let C, D, E be sets.
Prove that

$$
C \cap(D \cup E)=(C \cap D) \cup(C \cap E)
$$

proof:
(\subseteq) Let's show $C \cap(D \cup E) \subseteq(C \cap D) \cup(C \cap E)$
Let $x \in C \cap(D \cup E)$
Thus, $x \in C$ and $x \in D \cup E$.
Hence, $x \in C$ and $(x \in D$ or $x \in E)$.
So we have two cases:
(i) $x \in C$ and $x \in D$
or (ii) $x \in C$ and $x \in E$
case (i): Suppose $x \in C$ and $x \in D$
Then $x \in(\cap D$.
So, $x \in C \cap D$ or $x \in C \cap E$.

Thus, $x \in(C \cap D) \cup(C \cap E)$.
Case ($\bar{\mu}$): Suppose $x \in C$ and $x \in E$.
Then $x \in C \cap E$.
So $x \in C \cap D$ or $x \in C \cap E$.
Thus $x \in(C \cap D) \cup(C \cap E)$.
Thus in either case $x \in(C \cap D) \cup(C \cap E)$.
So, $C \cap(D \cup E) \subseteq(C \cap D) \cup(C \cap E)$.
(\geq) Let's show $(C \cap D) \cup(C \cap E) \subseteq C \cap(D \cup E)$
Let $y \in(C \cap D) \cup(C \cap E)$.
Then $y \in C \cap D$ or $y \in C \cap E$.
case (a): Suppose $y \in C \cap D$.
Then, $y \in C$ and $y \in D$.

So, $y \in C$ and $y \in D U E$.
Ergo, $y \in C \cap(D V E)$.
case (b): Suppose $y \in C \cap E$.
Then $y \in C$ and $y \in E$.
So, $y \in C$ and $y \in D \cup E$.
Thus, $y \in C \cap(D \cup E)$.
In either case, $y \in C \cap(D \cup E)$.
Thus, we have shown that

$$
\begin{aligned}
& \text { we have shown that } \\
& (C \cap D) \cup(C \cap E) \subseteq C \cap(D \cup E) \text {. }
\end{aligned}
$$

Since we have shown that

$$
\begin{aligned}
& \text { we have shown that } \\
& C \cap(D \cup E) \subseteq(C \cap D) \cup(C \cap E)
\end{aligned}
$$

and $(C \cap D) \cup(C \cap E) \subseteq C \cap(D \cup E)$
we know $C \cap(D \cup E)=(C \cap D) \cup(C \cap E)$

Def: Let A and B be sets. We say that A and B are disjoint if $A \cap B=\phi$ where ϕ is the empty set.

Ex:

$$
\begin{array}{ll}
A=\{1,2\} & A \cap B=\varnothing \\
B=\{3,4\} & \text { So, } A \text { and } B \\
\text { are disjoint }
\end{array}
$$

Def: Let A and B be sets. The difference of A and B is

Notation: Some people write $A \backslash B$ for $A-B$.

Ex:

$$
\begin{aligned}
\text { Ex: } & A=\{1,2,3,4,5,6,7\} \\
B & =\{8,10,11,2,5,1\} \\
A-B & =\{3,4,6,7\}
\end{aligned}
$$

$$
B-A=\{8,10,11\}
$$

$$
\begin{aligned}
& A-\{10,11,20\}=A \\
& \uparrow=\{1,2,3,4,5,6,7\} \\
& A-A=\phi
\end{aligned}
$$

- Sometimes all the sets you are looking at live inside of one big set. Let's call that big set a "universal set" or "universe"

Def: Let A be a set where U is a universal set (So, $A \subseteq U$)
Then the complement of A with respect to U is

$$
A^{c}=U-A
$$

$$
=\{x \mid x \in U \text { and } x \notin A\} \text {. }
$$

Ex:

$$
\begin{aligned}
& U=\{1,2,3,4,5,6,7,8,9,10,11,12\} \\
& A=\{2,4,6,8,10,12\} \\
& A^{C}=U-A=\{1,3,5,7,9,11\}
\end{aligned}
$$

Theorem: (de Morgan's laws)
Let U be a universal set. Let A and B be subsets of U. Then:
(1) $(A \cup B)^{c}=A^{c} \cap B^{c}$
(2) $(A \cap B)^{C}=A^{C} \cup B^{C}$
proof:
Let's prove (1). You can try (2).
\subseteq Let's show $(A \cup B)^{c} \subseteq A^{c} \cap B^{c}$.
Let $x \in(A \cup B)^{c}$.
Then, $x \in U$
and $x \notin A \cup B$.
So, $x \in \cup$ and
" $x \in A \cup B$ " is not true.
So, $x \in V$ and " $x \in A$ or $x \in B^{\prime \prime}$ is not
So, $x \in V$ and $x \notin A$ and $x \notin B$. 2450
Thus, $x \in A^{c}$
$\neg(P$ or $Q)]$ equivalent and $x \in B^{c}$.
$(\neg P)$ and $(\neg Q)$
So, $\dot{x} \in A^{c} \cap B^{c}$. \neg means not

Therefore, $(A \cup B)^{c} \subseteq A^{c} \cap B^{c}$.

2 : Now let's show $A^{\subset} \wedge B^{C} \subseteq(A \cup B)^{c}$. Let $y \in A^{c} \cap B^{c}$.
So, $y \in A^{c}$ and $y \in B^{c}$.
So, $y \in U$ and $y \notin A$ and $y \notin B . G \begin{gathered}\text { same } \\ \operatorname{logic} \\ \text { as }\end{gathered}$
Thus, $y \in U$ and $y \notin A \cup B$
So, $y \in(A \cup B)^{c}$.
Thus, $A^{c} \cap B^{c} \subseteq(A \cup B)^{c}$.
By $\left(\subseteq\right.$ and \because we have $(A \cup B)^{c}=A^{c} \cap B^{c}$

Another way to prove:

$$
x \in(A \cup B)^{C}
$$

inf $x \in \cup$ and $x \notin A \cup B$
iff $x \in U$ and $x \notin A$ and $x \notin B$
iff $x \in A^{c}$ and $x \in B^{c}$
iff $x \in A^{c} \cap B^{c}$.

$$
\text { Thus, }(A \cup B)^{c}=A^{c} \cap B^{c} \text {. }
$$

Workshop
HF 2-\#2

$$
\begin{aligned}
& A=\{2 k \mid k \in \mathbb{Z}\} \\
& B=\{3 n \mid n \in \mathbb{Z}\}
\end{aligned}
$$

Show $A \cap B=\{6 l \mid l \in \mathbb{Z}\}$.
proof:
© : Let's show $A \cap B \subseteq\{6 l \mid l \in \mathbb{Z}\}$. Pick some $x \in A \cap B$.
Then, $x \in A$ and $x \in B$.
So, $x=2 k$ and $x=3 n$ where k, n ace integers

So, $2 k=3 n$.
Thus, $3 n$ is even.
We can't have a being odd since then $3 n$ would be odd.

$$
\text { (odd } * \text { odd }=\text { odd })
$$

So n is even.
Thus, $n=2 m$ where m is an integer.
So, $x=3 n=3(2 m)=6 m$
So, $x \in\{6 l \mid l \in \mathbb{Z}\}$.
Thus, $A \cap B \subseteq\{6 l \mid l \in \mathbb{Z}\}$.
$\underline{\underline{Z}}:$ Now let's show $\{6 l \mid l \in \mathbb{Z}\} \subseteq A \cap B$.
Let $x \in\{6 l \mid l \in \mathbb{Z}\}$.
Then $x=6 j$ where $j \in \mathbb{Z}$.
Thus, $x=2(3 j) \in A$.
And, $x=3(2 j) \in B$
So, $x \in A \cap B$.
Thus, $\{6 l \mid l \in \mathbb{Z}\} \subseteq A \cap B$.

